

National Oceanic and Atmospheric
Administration (NOAA)

Commitment Tracking Interface
Detailed Design Document - Final

April 11, 2002

A System For Now
And The Future

CAMS

A System For Now
And The Future

CAMS

Enterprise Systems Engineering (ESE)
1400 Concord Point Lane
Reston, VA 20194
Phone: (703) 478-0166
Fax: (703) 478-6299

Enterprise Systems Engineering i Final (04/11/2002)

Table of Contents
1. INTRODUCTION ...1

1.1 BACKGROUND AND OBJECTIVES ..1
1.2 SCOPE...2
1.3 REFERENCES...3

2. ENVIRONMENT ..8

3. HIGH LEVEL DESIGN ...11
3.1 NOAA DATA MART REFRESH PROCESS ..11
3.2 NOAA DATA MART TABLE STRUCTURE ...14

3.2.1 NOAA Summary Tables ...17
3.2.2 NOAA Transaction Extract Tables ..19
3.2.3 NOAA Data Mart Support Table Definitions ..21

3.2.3.1 NDW_ACCOUNT_PERIOD_STATUS...21
3.2.3.2 NDW_ACCS_ID_CONTROL..21
3.2.3.3 NDW_ACCS_ID_MAP ..21
3.2.3.4 NDW_DEFAULTS...22
3.2.3.5 NDW_EXTRACT_ID_TABLE..22
3.2.3.6 NDW_FIN_CAT_DEF_CONTROL...22
3.2.3.7 NDW_FIN_CAT_DEF_DETAIL ...22
3.2.3.8 NDW_LO_EXTRACT_LOG ...23
3.2.3.9 NDW_MAXSEQNOS ..23
3.2.3.10 NDW_PROCESS_LOG ...23
3.2.3.11 NDW_REFRESH_PARAMS ...23
3.2.3.12 NDW_REFRESH_RUN_CONTROL ..23
3.2.3.13 NDW_RETURN_CODE_CONTROL ...24

3.2.4 CAMS Data Warehouse Reference Table Definitions ...24
3.3 NOAA DATA MART POPULATION ...26

3.3.1 Refresh Initiation ...26
3.3.2 Assigning Unique ACCS ID’S ...27
3.3.3 Refreshing Tables ..28

3.3.3.1 Refresh NDW_GL_ACCT_SUMMARY..29
3.3.3.2 Refresh NDW_FIN_CAT_SUMMARY ...30
3.3.3.3 Refresh NDW_BOP_SUMMARY..32
3.3.3.4 Refresh NDW_COMMIT_TRANS...32
3.3.3.5 Refresh NDW_AP_TRANS..33
3.3.3.6 Refresh NDW_BOP_DETAIL..34
3.3.3.7 Refresh NDW_LABOR_DETAIL ..35
3.3.3.8 Refresh NDW_RESERV_TRANS..35

3.4 DATA INTEGRITY..35
3.5 LINE OFFICE EXTRACT PROCESSING ..36
3.6 LINE OFFICE ON-LINE ACCESS...38
3.7 REFRESH RECOVERY ..38
3.8 DATA SECURITY...39

3.8.1 Database Roles..39
3.8.2 Privacy Act Data ...40

4. DETAILED DESIGN..41
4.1 NOAA DATA MART REFRESH ...41

4.1.1 Initiate NOAA Data Warehouse Refresh Process (NDW901_INITIATE.SQL)42

Enterprise Systems Engineering ii Final (04/11/2002)

4.1.2 Assign ACCS ID’s (NDW902_REFRESH.SQL) ..48
4.2 NOAA DATA MART SUMMARY TABLE REFRESH (NDW001_REFRESH.SQL)54

4.2.1 Refresh NDW_GL_ACCT_SUMMARY Table (NDW001_REFRESH.SQL)..........................54
4.2.2 Refresh NDW_FIN_CAT_SUMMARY Table (NDW002_REFRESH.SQL)61
4.2.3 Refresh NDW_BOP_SUMMARY Table (NDW003_REFRESH.SQL)68
4.2.4 Update Summary Tables to Reflect Accounting Period Status..75

4.3 NOAA DATA MART TRANSACTION TABLE REFRESH ..83
4.3.1 Refresh Commitment Transaction Tables From Trial (NDW010_REFRESH.SQL)83
4.3.2 Refresh Accounts Payable Transaction Table From Trial (NDW011_REFRESH.SQL).......83
4.3.3 Refresh Transaction Tables From Budget Tables (NDW012_REFRESH.SQL)....................96
4.3.4 Refresh Detailed Labor Data (NDW013_REFRESH.SQL)...102

4.4 LINE/FIELD OFFICE SUPPORT PACKAGES ...109
4.4.1 NDW_RECORD_LO_EXTRACT...109

4.5 DATA INTEGRITY..111
4.5.1 Refresh Status Report ..111
4.5.2 Refresh Run Control Table ..111
4.5.3 Process Log ...112

APPENDIX A – SUMMARY TABLE RECORD FORMATS ...113

APPENDIX B – TRANSACTION TABLE RECORD FORMATS ...114

APPENDIX C – SUPPORT TABLE RECORD LAYOUTS...115

APPENDIX D – REFERENCE TABLE RECORD LAYOUTS...116

APPENDIX E – CAMS TO FIMA CODE TRANSLATION..136

APPENDIX F – ISSUE LOG ...151

APPENDIX G – CFS-FIMA ACCOUNTS PAYABLE DOCUMENT CROSSWALK (DRAFT)152

APPENDIX H – BATCH ROUTINE LOG FILE LAYOUT ..173

Enterprise Systems Engineering iii Final (04/11/2002)

List of Figures
FIGURE 1. LOGICAL REPRESENTATION OF PLANNED CAMS OPERATING ENVIRONMENT 10
FIGURE 2. NOAA DATA MART EXTRACT PROCESS... 12
FIGURE 3. NOAA DATA REFRESH PROCESS FLOW SEQUENCE .. 13
FIGURE 4. NOAA DATA MART TABLES .. 15
FIGURE 5. MAPPING OF IFIMA TABLES TO NOAA DATA MART TABLES ... 16
FIGURE 6. NOAA DATA MART SUMMARY TABLES... 18
FIGURE 7. NOAA DATA MART FINANCIAL CATEGORY DEFINITIONS.. 31
FIGURE 8. OBLIGATION AND EXPENSE ACCOUNT NUMBERS IN TRIAL ... 34
FIGURE 9. LINE/FIELD OFFICE EXTRACT FIELDS.. 37
FIGURE 10. NOAA DATA MART REFRESH ROUTINES ... 41

Enterprise Systems Engineering 1 Final (04/11/2002)

1. Introduction

1.1 Background and Objectives

The Department of Commerce (DOC), National Oceanic and Atmospheric
Administration (NOAA) plans to fully implement the Commerce
Administrative Management System (CAMS) by the beginning of Fiscal Year
2003. A major component of the CAMS is the Core Financial System (CFS).
The CFS was selected as the standard accounting system for the Department
of Commerce bureaus. CFS supports:

 Core Financial System Management,

 General Ledger Management,

 Funds Management,

 Payment Management,

 Cost Management,

 Receipt Management, and

 Reporting.

Once implemented, CAMS will serve as the accounting system of record for
NOAA. At the point CAMS is fully implemented, the existing system of
record, NOAA’s Financial Management System (FIMA), will be
decommissioned. Therefore, any data obtained from FIMA or Interactive
FIMA (IFIMA) to support interfacing systems will not be available. The
objective of the Commitment Tracking Interface project is to ensure that the
Line and Staff Offices of NOAA can continue to receive the same or similar
information/data to what is currently received from FIMA/IFIMA to support
the existing Line Office commitment tracking/Management Information
System (MIS) systems.

The requirements of the project are to produce the following deliverables:

 Develop a Requirements Document that details NOAA’s needs
specifically for creating an interface to provide CAMS data to
Commitment Tracking/MIS systems.

 Prepare a Detailed Design document to define interface
specifications, flat file layouts, high level program logic,
temporary table definitions, and log report definitions required
for the development effort.

Enterprise Systems Engineering 2 Final (04/11/2002)

 Develop programs and associated scripts and data definition
language to implement the approved design.

 Develop a test plan to be used by the Government’s software
acceptance team to exercise and demonstrate the expected
features of the data warehouse.

 Guide and support the acceptance testing process, review
results, and make revisions as necessary.

 Provide a System Operations Guide for the interface to detail
the interface operations, reports, and user interface.

1.2 Scope

The scope of this project is to develop and provide: a requirements
specification, design document, test scripts, operations guide, operational
code, and scripts for a standard CAMS interface to provide “commitment
tracking” data to NOAA commitment tracking/MIS systems.

Note that the term “commitment” in this document refers to transactions
and/or financial events that are in the “pipeline”; including Budget Operating
Plans, commitments, obligations, accruals, reservations, cost adjustments, and
disbursements/expenses.

The Commitment Tracking Interface shall provide data to the Line Office’s
existing systems (which will require system changes to become “CAMS” data
oriented). It will support an interface (via Oracle tables or flat files) to
NOAA’s Line Office commitment tracking/ MIS systems from CAMS’ data
warehouse/data marts. This interface’s goal is to ensure that the data being
interfaced provides the same or similar capability as that currently provided.

“Same” data would be that data for which there is an exact match of values
(for example, the first four digits of the object class code).

“Similar” data is that which serves the same basic purpose but which may be
structured differently (for example, the CAMS Project Code [38R1BA7] is
similar to the FIMA Task Code [8R1BA7] but adds a leading digit).

It is also important to note that the NOAA Data Mart presents/summarizes
information from CAMS/CFS. It does NOT create new information.

Due to the time period in which to implement this capability, the requirements
for this project have been prioritized as follows:

Enterprise Systems Engineering 3 Final (04/11/2002)

Priority 1:

 Budget Operating Plan (BOP) Data

 Obligations (CAMS SGL 4800 Series)

 Expenses (CAMS SGL 4900 Series)

 Cost Adjustments (Corrections to Accounting on Vendor
Invoices [PM006])

 Receipt of Goods

 Labor – Summary Level

Priority 2:

 Labor – Detail Level

 Feeder System Reservations (i.e., Travel Authorizations)

Priority 3 or Later:

 Commitments (CAMS SGL 4700)

 Summary Level Transfers

 Commerce Purchase Card System (CPCS) Log Orders
(Requires CSC agreement to make application changes to
CPCS.)

Note that the Priority 2/3 items will NOT be available in the initial June 2002
delivery of the NOAA Data Mart. However, the priority 2 items should be
available for September 30, 2002.

This task is NOT to build Line Office custom reports or queries, but rather to
ensure that the Line Offices can obtain the CAMS data they require.

1.3 References

This document was compiled through the conduct of user interviews and
review of supporting technical documentation. The following individuals
were consulted and provided input to this document:

1. Alexander, Vicky, Department of Commerce, NOAA, National
Weather Service, Central Region.

2. Barnes, Lillian, Department of Commerce, NOAA, Office of
Finance and Administration.

Enterprise Systems Engineering 4 Final (04/11/2002)

3. Bass, Gregory, Department of Commerce, NOAA, Office of
Marine and Aviation Operations.

4. Boller Mike, Department of Commerce, NOAA, Office of
Finance and Administration.

5. Brown, Agnes, Department of Commerce, NOAA, National
Weather Service, Headquarters/CFO.

6. Brown, Allen, Department of Commerce, NOAA, Office of
Finance and Administration.

7. Brown, Annette, Department of Commerce, NOAA.

8. Burger, Eugene, Department of Commerce, NOAA, Office of
Oceanic and Atmospheric Research.

9. Cartwright, Chris, Department of Commerce, NOAA, National
Environmental Satellite and Data Information Service.

10. Coleman, Lois, Department of Commerce, NOAA, Office of
Finance and Administration.

11. Cook, Rhonda, Department of Commerce, NOAA, National
Weather Service, Central Region.

12. Dominic, R. J., Department of Commerce, NOAA, Office of
Finance and Administration.

13. Driscoll, David, Department of Commerce, NOAA, National
Marine Fisheries Service (NMFS).

14. Foster, Violet, Department of Commerce, NOAA, National
Weather Service.

15. Hay, Cindee, Department of Commerce, NOAA, National
Weather Service, Central Region.

16. Hay, Rhonda, Department of Commerce, NOAA, National
Weather Service, Central Region.

17. Heaton, Glen, Department of Commerce, NOAA, National
Weather Service, Southern Region.

18. Henderson, Robert, Department of Commerce, NOAA, Office
of Finance and Administration.

19. Hendsbee, David, Department of Commerce, NOAA, National
Ocean Service.

Enterprise Systems Engineering 5 Final (04/11/2002)

20. Hodges, Lynn, Department of Commerce, NOAA, National
Weather Service, Office of Operational Systems.

21. Holdsworth, William, Department of Commerce, NOAA,
Office of Finance and Administration.

22. Hughes, Pamela, Department of Commerce, NOAA, National
Environmental Satellite and Data Information Service.

23. Ingels, Millie, Department of Commerce, NOAA, Office of
Finance and Administration.

24. Lewis, Diana, Department of Commerce, NOAA, Office of
Marine and Aviation Operations.

25. Loitsch, Cindy, Department of Commerce, NOAA, Office of
Oceanic and Atmospheric Research.

26. Lord, John, Department of Commerce, NOAA, National
Weather Service.

27. Lovett, Ann, Department of Commerce, NOAA, Office of
Finance and Administration.

28. Marrazzo, Carolyn, Department of Commerce, NOAA, Office
of Finance and Administration.

29. Marth, Donnie, Department of Commerce, NOAA, National
Ocean Service.

30. Martin, Gerry, Department of Commerce, NOAA, National
Weather Service, National Data Buoy Center.

31. McNeary, Caroline, Department of Commerce, NOAA,
National Weather Service, OCWWS.

32. Nguyen, Cristina, Department of Commerce, NOAA, Office of
Finance and Administration.

33. O’Connor, John, Department of Commerce, NOAA, National
Weather Service, Headquarters/CFO.

34. O’Connor, Pat, Department of Commerce, NOAA, Office of
Finance and Administration.

35. Olivere, Peter, Department of Commerce, NOAA, Office of
Finance and Administration.

Enterprise Systems Engineering 6 Final (04/11/2002)

36. Parr, Eric, Department of Commerce, NOAA, National
Weather Service.

37. Price, Gregory, Department of Commerce, NOAA, Office of
Finance and Administration.

38. Pulver, Maureen, Department of Commerce, NOAA, National
Marine Fisheries Service (NMFS).

39. Rieck, Mary, Department of Commerce, NOAA, National
Weather Service.

40. Rubio, Linda, Department of Commerce, NOAA, Office of
Marine and Aviation Operations.

41. Ryan, Sandra, Department of Commerce, NOAA, Office of
Finance and Administration.

42. Schornick, Glenda, Department of Commerce, NOAA,
National Weather Service, National Data Buoy Center.

43. Semones, Rica, Department of Commerce, NOAA, Office of
Oceanic and Atmospheric Research.

44. Shultz, Sue, Department of Commerce, NOAA, National
Weather Service, Central Region.

45. Sparks, Larry, Department of Commerce, NOAA, Office of
Finance and Administration.

46. Stark, Gerald, Department of Commerce, NOAA, National
Marine Fisheries Service (NMFS).

47. Stasulli, Roxanne, Department of Commerce, NOAA, National
Weather Service.

48. St. Clair, Karen, Department of Commerce, NOAA, National
Weather Service, Western Region.

49. Williams, Terri, Department of Commerce, NOAA, National
Environmental Satellite and Data Information Service.

50. Woods, Lenora, Department of Commerce, NOAA, Office of
Finance and Administration.

51. Yoder, Jaye, Department of Commerce, NOAA, National
Weather Service, Management & Finance.

Enterprise Systems Engineering 7 Final (04/11/2002)

52. Zuckerberg, Lisa, Department of Commerce, NOAA, Office of
Marine and Aviation Operations.

The following documents were used as reference material in compiling this
document:

1. Accounting Transactions Edit and Update Program
Requirements, Office of Comptroller, Financial Management
Division, Financial Systems Branch, June 1993.

2. Financial Analysis and Commitment Tracking System
(FACTS) Procedures Manual, Version 5.0, September 2000,
Larry Sparks, Chief, Systems Development Branch, Systems
Division, Information Systems Office, Office of Financial
Administration, National Oceanic and Atmospheric
Administration.

3. WASC Budget Tracking System (WBTS).

4. FACTS for the NOS CAMS Pilot.

5. Labor (LAB) Interface Technical Documentation, Version 1.0,
September 9, 2000.

Enterprise Systems Engineering 8 Final (04/11/2002)

2. Environment

The Department of Commerce is developing software to create a CAMS data
warehouse. The CAMS data warehouse will provide detailed trial data (by
General Ledger account) and summarized data using common Department of
Commerce definitions for all accounting events. This data warehouse will
provide a common capability for all CAMS bureaus (e.g., NOAA, Census,
NIST, etc.) and each bureau will install the DOC-provided software and load
their data in their data warehouse.

Data for the Commitment Tracking interface will be provided through a data
mart. A data mart is a focused subset of information from the data warehouse
that addresses a specific requirement(s). CAMS will have two types of data
marts:

 Department of Commerce provided software – These data
marts employ common Department of Commerce-wide
definitions (i.e., Budget, etc.) and are populated by standard
software.

 NOAA/BXA-Specific – These data marts are developed
specifically to support NOAA’s business needs (i.e., Integrated
Travel Manager [ITM] Travel Manager Travel Authorizations
[TMTA], Commerce Purchase Card System [CPCS], Pilot,
Accounts Payable Payment Inquiry, etc.). Currently, the ITM
TMTA and CPCS data marts exist.

When fully implemented, the CAMS data warehouse and data marts installed
at NOAA will reside on the Alpha GS140A server (Cumulus). The CAMS
production system (Core Financial System, Commerce Small Purchase
System [CSPS], and the Commerce Purchase Card System [CPCS]) for
transaction processing will be hosted on the Alpha GS140B server (Stratus).
Other aspects of the CAMS environment include:

 CAMS is implemented using the Oracle Relational Database
Management System (RDBMS) and supporting development
software.

 NOAA currently has a NOAA-wide license for the Oracle
RDBMS, Forms, Reports, and Web for CAMS applications.

 SQL*Plus licenses are NOT included.

 NOAA also has licenses for Oracle Discoverer, a data
warehouse/data mart Graphical User Interface (GUI) query
tool.

Enterprise Systems Engineering 9 Final (04/11/2002)

 The NOAA CAMS office will provide the end-user (client-
side) license for Oracle Discoverer. However, each line office
will be responsible for user training of this tool.

 Discoverer also has a server that requires set-up for access.

 There will be no Open Database Connectivity (ODBC) access
to CFS.

 The data warehouse and data marts will be accessed via menus
to obtain on-line canned queries and reports.

 Each Line Office may have custom queries developed or
develop their own through Discoverer.

 The ability to perform batch extracts will also be provided.

Figure 1 provides a logical representation of the planned CAMS operating
environment.

Enterprise Systems Engineering 10 Final (04/11/2002)

NOAA's Network
(Logical view)

��

��

DEC Alpha GS140A - UNIX 4.0G
CAMS Data Warehouse (Production)

ITM 8.x / PCS & NPS
(Disaster Recovery for GS140B)

Integrated DW
Database (Oracle 8i) &

Travel Manager (TM
8.x) Database

(Progress 9.x); NPS
(Oracle 7.3.4.4)

Integrated CAMS
Database (Oracle

7.3.4.4); DW (Oracle
8.i); BCtest, & Travel
Manager Database

(Progress 9.x)

SQLNet - TCP/IP

CAMS Technical Architecture for FY02
Prepared as of January 25, 2002.

This diagram is a logical representation of the
planned CAMS environment.

��������������������������������������

��������������������������������������

DEC Alpha 4100 - UNIX 4.0G
Development and Test

CFS/CSPS/CPCS/DW & ITM 8.x

Sun Enterprise 3500
CPCS Dev. & Test

Oracle Web Server -iAS Ver. 9i
(Future: Web Based Discoverer)

Sun Enterprise 3500
CPCS Production

Oracle Web Server-iAS
(Future: Web Based Discoverer)

��
DEC Alpha GS140B - UNIX 4.0G

CAMS Production
CAMS (CFS/CSPS/CPCS)

Integrated CAMS
Database

CFS/CSPS/CPCS
(Oracle 7.3.4.4)

Citrix MetaFrame XP
(4 Terminal Servers)
Dell 6x50 NT Servers

CAMS Client Server Apps
(ITM, CSPS, DW)

Citrix nFuse Web
Server

Lucent Firewall

ASC Firewalls

Packeteer Report Center
(Supports Data Collection
and Reporting on Network

by Application)

Citrix Domain
Server

Cumulus
Stratus

NOAABC2 NOAABC1

Figure 1. Logical Representation of Planned CAMS Operating Environment

Enterprise Systems Engineering 11 Final (04/11/2002)

3. High Level Design

The initial design of the NOAA Data Mart is to provide a table structure that
allows Line/Field Offices the ability to extract “same or similar” data for their
commitment tracking/MIS systems that they currently get from IFIMA.

This section describes the overall strategy for:

1. Extracting the data from the production Core Financial System
(CFS)

2. Populating the NOAA Data Mart Summary tables for Budget
Operating Plan data, data having a general ledger impact by
Standard General Ledger Account, and data having a general
ledger impact by NOAA-defined financial categories.

3. Populating transaction level detail tables for commitments
(priority 3), obligations, expenses, labor, Budget Operating
Plans, and reservations (transactions that have no general
ledger effect).

4. Managing the NOAA Data Mart refresh process to ensure
successful completion and data integrity.

5. Data security and access.

6. Line/Field Office extract processing.

This section will also provide a mapping of the IFIMA tables used by the
Line/Field Offices to the NOAA Data Mart tables.

3.1 NOAA Data Mart Refresh Process

The NOAA Data Mart will be populated based on CFS tables currently being
extracted by the CAMS data warehouse effort along with additional table data
required for the NOAA Data Mart. Figure 2 illustrates the overall strategy of
how the NOAA Data Mart will be populated.

Enterprise Systems Engineering 12 Final (04/11/2002)

Data WarehouseCFS

CFS Data Base

Data Transfer
(Nightly

Snapshot)

Warehouse
Refresh

Administrator

CAMS
Warehouse

Update

Staging Tables
Data Mart #1

Tables
(DOC)

Data Mart #2
Tables
(DOC)

Warehouse Refresh
Job Scheduler

NOAA
Data Mart

Note that the NOAA data
mart will exist under the
same database instance
and may share tables.

The NOAA data mart is the
data source for the Line
Office interface.

NOAA
Data Mart

Update

Figure 2. NOAA Data Mart Extract Process

The CAMS Data Warehouse refresh process is run on a nightly basis. This
routine takes a delta snapshot of the core CFS tables that it places in a staging
area. From this staging area, it then populates its various data marts.

As part of the CAMS Data Warehouse process that takes a snapshot of CFS
tables, NOAA will introduce several additional tables required for populating
NOAA Data Mart tables and for tracking data status. These additional tables
are:

1. APERIOD – Provides information concerning the status of the
various accounting periods (i.e., OPEN, PRELIMINARY
CLOSE, or CLOSED).

2. CBS_TRANS_ITEM_D – Information specific to Commerce
Purchase Card System (CPCS) transactions. From this table
the merchant name and reference number can be provided.

3. CBS_TRANSACTIONS_D – Information specific to CPCS
transactions. From this table the cardholder’s number for this
transaction can be provided.

4. CBS_CARD_HOLDER_L - Information specific to CPCS
transactions. From this table the ASC number and employee
number (from which the cardholder’s name can be derived) can
be provided.

5. CBS_NOTES_D – First entry for a transaction should contain
the description of what was procured.

6. GJ_CONTROL – For labor document level information.

7. GJ_DETAIL – For summarized labor data to support
providing labor data at the employee level.

Enterprise Systems Engineering 13 Final (04/11/2002)

8. GJ_EMPLOYEE – For detailed employee data.

9. EMPLOYEE_CONTROL – Employee data.

Once CAMS Data Warehouse completes the snapshot portion of the refresh,
the NOAA Data Mart may begin its refresh process. Figure 3 presents the
routines associated with the NOAA Data Mart refresh process and the
sequence in which they would run. Each of these processes is described in
detail in Section 4, Detailed Design.

NDW902_REFRESH.SQL
(Assign ACCS ID's)

NDW001_REFRESH .SQL
(NDW_GL_ACCT_

SUMMARY)

NDW002_REFRESH .SQL
(NDW_FIN_CAT_SUMMARY)

NDW003_REFRESH .SQL
(NDW_BOP_ SUMMARY)

NDW010_REFRESH .SQL
(NDW_COMMIT_TRANS)

(Priority 3)

NDW012_REFRESH .SQL
(NDW_BOP_DETAIL)

NDW013_REFRESH .SQL
(NDW_LABOR_DETAIL)

(Priority 2)

NDW050.SQL
(Update

MONTH_CLOSED_FLAG)

Jobs may be run in parallel.
Job should not be launched
until NDW001_REFRESH
and NDW002_REFRESH

are complete.

NDW011_REFRESH .SQL
(NDW_AP_TRANS)

NDW014_REFRESH .SQL
(NDW_RESERV_TRANS)

(Priority 2)

Force the Log Switch

Perform a Checkpoint on
NDW Tables

NDW901_INITIATE.SQL
(Initiate Refresh)

Figure 3. NOAA Data Refresh Process Flow Sequence

Note that there are several business rules that will be enforced through the
code for performing a NOAA Data Mart refresh:

1. Refresh jobs may need to be run multiple times within the
same day.

2. For every table updated, the refresh routine must track the
starting and ending transaction numbers that were processed.

3. Each refresh job must produce a log file to indicate whether the
job was successfully started or not (e.g., if the Oracle database
instance was available or not) along with the database log table
entries. A separate Oracle database log table must be

Enterprise Systems Engineering 14 Final (04/11/2002)

maintained to record when the job started and finished, and
interim status lines.

4. Each batch job must provide feedback to the operator on the
status of the job with interim messages sent to the terminal
reporting progress (e.g., the message “NDW001 now
processing TRIAL_ID 9999999” would be displayed for every
100th record processed).

5. All jobs must use standard error messages from the CAMS
RETURN_CODE_CONTROL table using existing codes and
messages to the maximum extent possible. At a minimum, any
displayed or written system messages should indicate the job
name, the date and time, the transaction number or relevant key
fields, and specific information identifying the problem to
include field names and values where possible.

6. All code should be written to correct any issues encountered
through a back out of invalid data and/or a refresh versus a
complete table/data mart reload.

7. Code should be written to allow parallel processing of jobs
against single tables (for example, if two routines need to add
items to the same table, the code should be written to allow this
… i.e., no exclusive writes).

8. A refresh should be able to be stopped in the middle of the
process by the operator in a controlled manner (versus being
aborted) and then resumed at a later time continuing from
where it left off.

9. To ensure tables within the NOAA data mart balance with one
another, only one NDW refresh process should be running at a
time. Although processes within a single refresh can be run in
parallel, a new refresh should not be started until the previous
one completes.

10. A new refresh should not be allowed to be initiated if the
previous one did not process through completion.

11. Refresh routines should be able to be run independently of
each other should complete table re-builds be necessary for
specific tables.

3.2 NOAA Data Mart Table Structure

The NOAA Data Mart will provide a series of tables for Line/Field Office
extraction into their commitment tracking/MIS systems. Figure 4 identifies

Enterprise Systems Engineering 15 Final (04/11/2002)

the main tables that comprise the NOAA Data Mart. In addition to these,
there are a series of support tables that are described in Section 3.2.3, NOAA
Data Mart Support Table Definitions with the table formats provided in
Appendix C – Support Table Record Layouts.

NOAA Data Mart

Summary Tables

NDW_BOP_SUMMARY
NDW_FIN_CAT_SUMMARY
NDW_GL_ACCT_SUMMARY

Transaction Extract Tables

NDW_COMMIT_TRANS
NDW_AP_TRANS

NDW_LABOR_DETAIL
NDW_BOP_DETAIL

NDW_RESERV_TRANS*

* No GL Effect

Document Tracking Tables

TBD

Figure 4. NOAA Data Mart Tables

The tables are grouped by whether they are Summary Tables that provide data
summarized by ACCS and accounting period (Fiscal Month and Fiscal Year)
and Transaction Extract Tables that provide detailed records of every
transaction that either incremented an accounting amount or decremented an
amount. For example, for a single line item from a vendor invoice that was
initiated through a Purchase Order, two transactions will be captured (both in
NDW_AP_TRANS) in the NOAA Data Mart, an unpaid expense record
showing the amount debited to this account and a record to liquidate the

Enterprise Systems Engineering 16 Final (04/11/2002)

amount (as a credit) from the undelivered order that was posted for that
Purchase Order line item. In essence, this transaction takes the amount out of
the undelivered order category and places it in the unpaid expense category.
The third group of tables, Document Tracking Tables, are not directly
required for the extraction of records, but will be created as a lower priority
item to assist in the analysis of transactions and the reconciliation of charges.

Figure 5 illustrates the mapping of the IFIMA tables currently being used by
the Line/Field Offices as the source of data for their commitment
tracking/MIS systems and how they map to the NOAA Data Mart tables.

TRANS1-5
JANTRN-DECTRN

F99TRN

LABOR1-LABOR5
LABORA-LABORE

LABORSREVTSK
(Priority 3)

LOLAB

LOEMPVIEW
(HRDS data ... Later

Priority Item)

REVIEW
(Priority 3)

DW_PURCH_CARDNDW_COMMIT_TRANS
(Priority 3)

NDW_AP_TRANS

NDW_LABOR_DETAIL

TMTA
NDW_RESERV_TRANS

MASTER

FOPCUR

NDW_FIN_CAT_SUMMARY

NDW_BOP_SUMMARY

Includes summarized labor
data that is posted to TRIAL

as paid expenses.

Figure 5. Mapping of IFIMA Tables to NOAA Data Mart Tables

The NOAA Data Mart will provide “same or similar” data to what is stored in
IFIMA. Some of the differences in data include:

1. Any data currently available in IFIMA that is generated outside
of CAMS and will not be converted, and therefore will not be
available through the NOAA Data Mart. For example,
personnel data.

Enterprise Systems Engineering 17 Final (04/11/2002)

2. The IFIMA TRANS1-5 tables group transactions on a weekly
basis. CAMS does not process with a weekly concept. Data
will be downloaded on a nightly basis into the NOAA Data
Mart and will be summarized at the monthly level.

3. CAMS does not maintain the concept of a single document
number that is unique across all document types. Each
document type is generally controlled by a unique transaction
number. The value of which may be the same across document
types (e.g., there can exist a Purchase Order with a transaction
number equal to 1, a vendor invoice with a transaction number
equal to 1, a Budget Operating Plan with a transaction number
equal to 1 and they can all be unrelated).

The detailed transactions will capture all transaction numbers
relevant at the time the transaction was generated providing a
variety of ways in which to query the data.

3.2.1 NOAA Summary Tables

The CFS TRIAL table is used as the basis of reliable information for
recording general ledger accounting events. For each transaction processed in
CFS, multiple transactions showing the movement of money are posted to the
TRIAL table. Although this table provides a wealth of information, the size
of the table is too large for efficient processing (as of March 2002, there were
over 30 million rows) and much of the data is encoded and hard for the
general user to interpret. Each transaction is given a Standard General Ledger
account number that identifies the type of transaction it is. There are 360
active account/sub-account numbers defined within CFS of which only 25 are
of interest to this effort.

For both reporting and extract purposes, the NOAA Data Mart will summarize
this data at two levels as shown in Figure 6.

Enterprise Systems Engineering 18 Final (04/11/2002)

TRIAL

Lowest level of detail available on transactions.

There are generally two or more entries per transaction
recorded within this table.

NDW_GL_ACCT_SUMMARY

Data will be summarized from TRIAL by GL
ACCOUNT_NO, ACCS, fiscal year, and fiscal month.

This level of summary will allow users to interpret data
at the lowest SGL level.

There will be one entry per month per ACCS per SGL
account/sub-account.

NDW_FIN_CAT_SUMMARY

Data will be further summarized by financial categories
more applicable to NOAA's needs (e.g., Obligations,
Undelivered Orders, Paid Expenses, Unpaid
Expenses, etc.).

Categories will be defined flexibly by linking the GL
ACCOUNT_NO to a financial category through tables.

There will be one entry per month per ACCS per
Financial Category.

NDW_BOP_SUMMARY

Source Tables

BUDGET_CONTROL
BUDGET_DETAIL

Figure 6. NOAA Data Mart Summary Tables

The first level is by standard general ledger account/sub-account number,
month and fiscal year (based on general ledger accounting period), and
ACCS. This groups the data at the lowest standard general ledger level for all
account/sub-account numbers that can be generated through CFS – not just
those required by the Line/Field Office commitment tracking interfaces.
Therefore, not only will undelivered order data be available, but also accounts
receivable, liabilities, appropriations, etc. There will be a row entered for
each account/sub-account number, fiscal year, fund code fiscal year, month,
and unique ACCS (does not include the user defined portion of the ACCS).
This summarization is stored in the NDW_GL_ACCT_SUMMARY table.

The second level is at one level higher, where one or more standard general
ledger accounts are combined into a NOAA-defined category. Categories are
defined or can be changed at the beginning of a fiscal year. Unlike the
NDW_GL_ACCT_SUMMARY where there is one row for each standard
general ledger account/sub-account number, the
NDW_FIN_CAT_SUMMARY shows the values for all defined categories for
a month, fiscal year, fund code fiscal year, ACCS combination. Therefore,
only a single row needs to be read to obtain the amounts for all categories for
a unique ACCS for the month.

In addition to summarizing data from the TRIAL table, the NOAA Data Mart
will also provide summarized Budget Operating Plan data in the
NDW_BOP_SUMMARY table. This table groups the BOP data by month,
fiscal year and ACCS. Note that, unlike TRIAL transactions, some BOPs do
not use the entire ACCS. For example, a BOP may be defined at the program

Enterprise Systems Engineering 19 Final (04/11/2002)

level. In this case fields such as the Project Code and Task Code would be
stored as all zeroes.

Note that summary tables summarize data on a daily basis at the general
ledger account period level (month). During an open general ledger account
period, the amounts in the summary tables will change to reflect the new
transactions processed. They will not reflect the delta amounts from day to
day, only the total values.

The formats for the NOAA Data Mart summary tables are provided in
Appendix A – Summary Table Record Formats.

3.2.2 NOAA Transaction Extract Tables

The source of detailed transaction data for the Line/Field Offices will be
found in the NOAA transaction extract tables. These tables will be generated
from TRIAL entries and are organized by type of data:

 NDW_COMMIT_TRANS – Transactions with an account
number equal to 4700. NOAA currently does not do
commitment based accounting; therefore, this table will be
implemented as a later phase item.

 NDW_AP_TRANS – Transactions with an account number
between 4800 and 4899 (obligations) and transactions with an
account number between 4900 and 4999 (expenses).

 NDW_LABOR_DETAIL – Detailed labor transactions (by
employee) that are provided by the NFC and are stored in CFS
in the GJ_EMPLOYEE table. These entries are also
summarized by the NOAA NFC interface and posted to CFS as
summarized entries under the paid expenses account number.

 NDW_BOP_DETAIL – Detailed Budget Operating Plan data
from entries made in the Budget Operating Plan Transaction
screen (FM066).

 NDW_RESERV_TRANS – Within the NOAA Data Mart,
reservations are defined as transactions that are generated
outside of the Core Financial System that may eventually result
in a commitment, estimated accrual, obligation, or expense;
however, they do not have a general ledger effect within CFS.
The existing Travel Manager Travel Authorization (TMTA)
data mart will be converted over to this table format. If the
decision is made to record accounting with Commerce
Purchase Card System (CPCS) log orders, that information
may also be considered a reservation.

Enterprise Systems Engineering 20 Final (04/11/2002)

The two primary transaction tables generated from the CFS TRIAL table
(NDW_COMMIT_TRANS and NDW_AP_TRANS) will be comprised of
transactions that generate the entry followed by the transaction(s) that
liquidates the entry. For example, a purchase order is approved for $50
resulting in an undelivered order entry in the NDW_AP_TRANS table. The
vendor invoice is received and approved that liquidates the undelivered order
(entry in NDW_AP_TRANS for -$50) and is recorded as an unpaid expense
(entry in NDW_AP_TRANS for $50). These tables will only have entries
inserted into them – not modified or deleted.

Note that transactions are recorded at the document/item/line (also called
Multiple Distribution Line [MDL] or account) level. Note: FIMA tracks at
the document level versus CAMS that tracks at the item/MDL level).

In addition to the information that is recorded in the TRIAL table, the
transaction tables will also include data obtained from the source tables that
generated the TRIAL entry. The NOAA Data Mart will capture as much
relevant data as possible that is static at the time the transaction was
generated.

The transactions will record one or more of the following document numbers
by name. The term in parentheses indicates the field prefix in the table:

 Commitment Number (COMMIT)

 Purchase Order Number (PO)

 Estimated Accrual Number (EA)

 Receiving Ticket Number (RT)

 Vendor Invoice Number (INV)

 Disbursement Number (DISB)

 Invoice Correction Number (INVCOR)

 Void Number (VOID)

 General Journal Number (GJ)

 Source Reference (PRE) This field is stored as
REFERENCE_NUMBER and will appear with a prefix as
reflected in many of the other document types in this list (e.g.,
PO_REFERENCE_NO, INV_REFERENCE_NO, etc.).

 Feeder System Number (PO_FEEDER_SYS_NO). Only
entered on Purchase Orders. Will be carried forward with
other Purchase Order related fields.

Enterprise Systems Engineering 21 Final (04/11/2002)

If the document is a Purchase Order, it will have a Purchase Order number. If
the document is a Purchase Order that was based on a commitment, it will
have both the Purchase Order number as well as the Commitment number. As
mentioned previously, the transactions will be created with as much
information as is available at the time the transaction is generated and will not
be modified. Therefore, the Purchase Order will have the Commitment
number, but the Commitment will not have the Purchase Order number (it is
not known at the time the commitment is created).

The detailed transactions will capture all transaction numbers relevant at the
time the transaction was generated providing a variety of ways in which to
query the data.

3.2.3 NOAA Data Mart Support Table Definitions

There are a number of supporting tables that will be populated either through
the batch jobs or via SQL commands by the system administrator (e.g., for
parameter tables). These tables are defined in the following subsections.

3.2.3.1 NDW_ACCOUNT_PERIOD_STATUS

Description: This table will provide information on the status of the General
Ledger Accounting Period based on the General Ledger beginning and ending
dates. This status (O – Open, P – Preliminary Close, or C – Closed) will help
users better interpret the data being reviewed. For example, unless the period
is closed, not all batch processes may have been run and additional
transactions may be processed that change the amounts.

Update Method: NOAA Data Warehouse Routine

3.2.3.2 NDW_ACCS_ID_CONTROL

Description: This table stores the unique NDW_ACCS_ID for each ACCS
combination (based on BUREAU_CODE, FUND_CODE, ORG1-7_CODE,
PROGRAM1-4_CODE, PROJECT_CODE, TASK_CODE, and OBJECT1-
4_CODE). The NDW_ACCS_ID is then associated with the TRIAL_ID of
the TRIAL record to which is applies. Once the NDW_ACCS_ID is
determined for the TRIAL record, comparison of the NDW_ACCS_ID to
summary tables is more efficient.

Update Method: NOAA Data Warehouse NDW902_REFRESH.SQL Routine

3.2.3.3 NDW_ACCS_ID_MAP

Description: One to many relationship between the
NDW_ACCS_ID_CONTROL table and NDW_ACCS_ID_MAP table.
Associates the NDW_ACCS_ID to the TRIAL_ID of the TRIAL record to
which is applies.

Enterprise Systems Engineering 22 Final (04/11/2002)

Update Method: NOAA Data Warehouse NDW902_REFRESH.SQL Routine

3.2.3.4 NDW_DEFAULTS

Description: Stores default parameters to be used by the NOAA Data Mart
processes. These defaults apply to the entire data mart instance (versus any
single bureau, ASC, Line Office, or FMC. Parameters are defined through the
ITEM_NAME with the value stored in the VALUE field. The purpose of this
table is to eliminate any hard coding of values that may change over time
within the code.

Update Method: SQL script to initially populate as well as SQL commands
executed by the NOAA Data Mart administrator. Eventually, an on-line
screen may be developed for data entry.

3.2.3.5 NDW_EXTRACT_ID_TABLE

Description: Assigns a unique identifier to each Line/Field Office extract
permitted to record extracts against the NOAA Data Mart tables. Identifies
the Bureau, Line Office, and FMC performing the extract; the interfacing
system name, the point-of-contact employee number and name, and any notes
concerning the extract.

Update Method: SQL script to initially populate as well as SQL commands
executed by the NOAA Data Mart administrator. Eventually, an on-line
screen may be developed for data entry.

3.2.3.6 NDW_FIN_CAT_DEF_CONTROL

Description: Defines the Financial Category to be used to summarize TRIAL
data. Provides a start and end date during which this category was used and
its current active status. Any changes to a definition must be done by Fiscal
Year.

Update Method: SQL script to initially populate as well as SQL commands
executed by the NOAA Data Mart administrator. Eventually, an on-line
screen may be developed for data entry.

3.2.3.7 NDW_FIN_CAT_DEF_DETAIL

Description: Defines the Standard General Ledger account/sub-account
numbers that will be summarized within the associated Financial Category.
Provides a start and end date during which this account number was included
and its current active status. Any changes to a definition must be done by
Fiscal Year.

Update Method: SQL script to initially populate as well as SQL commands
executed by the NOAA Data Mart administrator. Eventually, an on-line
screen will be developed for data entry.

Enterprise Systems Engineering 23 Final (04/11/2002)

3.2.3.8 NDW_LO_EXTRACT_LOG

Description: Provides a log of the Line/Field Office routine that performed
the extract, the date and time that the routine started and ended, the beginning
and ending trans numbers processed, beginning and ending modification dates
processed, the table name against which the extract was performed, and the
number of records and amount processed and extracted.

This log will be populated by the Line Office extract routines through logic
they develop.

Update Method: Line/Field Office Extract Routines

3.2.3.9 NDW_MAXSEQNOS

Description: Controls the next sequential number to be used for table
transaction numbers / control fields.

Update Method: SQL script to initially populate/update for new entries.
NOAA Data Warehouse Refresh Routines as numbers are assigned.

3.2.3.10 NDW_PROCESS_LOG

Description: A detailed log of the activities performed by a NOAA Data Mart
batch routine. This table is intended to assist in tracking the status of a
routine and for debugging in the event of an abnormal termination. Entries
are generally included in the .log reports generated by the batch routine.

Update Method: NOAA Data Warehouse Batch Routines

3.2.3.11 NDW_REFRESH_PARAMS

Description: Stores parameters to be used by the NOAA Data Mart refresh
routines that populate the data mart tables. These routines will generally
maintain the last transaction number or modification date processed for a
particular table.

Update Method: NOAA Data Warehouse Refresh Routines

3.2.3.12 NDW_REFRESH_RUN_CONTROL

Description: Stores information concerning the data to be included in the
refresh run that is initiated. Also tracks the status of the various refresh
routines to ensure successful completion and restart if necessary.

Update Method: Entry is initially created through NDW901_INITIATE.SQL
and then updated by the other refresh routines to reflect status.

Enterprise Systems Engineering 24 Final (04/11/2002)

3.2.3.13 NDW_RETURN_CODE_CONTROL

Description: Contains a unique message indicator, a short description for
display on reports/forms, and a long description for troubleshooting. This
table ensures consistency of message text for the same event.

Update Method: SQL script to initially populate as well as SQL commands
executed by the NOAA Data Mart administrator. Eventually, an on-line
screen may be developed for data entry.

3.2.4 CAMS Data Warehouse Reference Table Definitions

The CAMS Data Warehouse refresh routine takes snapshots of a number of
CFS reference tables. These reference tables will be available for user access
for query only. Note that discussions with Finance still need to take place to
determine what data elements should be made available for some of these
tables (e.g., vendor and customer tables). The table formats are included in
Appendix D – Reference Table Record Layouts.

 CUSTOMER – Information concerning customers for
accounts receivable transactions.

 CUSTOMER_CONTACT – One-to-many child relationship
to CUSTOMER_CONTROL. Identifies customer points-of-
contact.

 DW_BUREAU_DIM – Identifies the bureau code, name, and
active status for each bureau.

 DW_EMPLOYEE_DIM – Provides some basic information
concerning an employee (i.e., employee number, name, and e-
mail address).

 FUND – Identifies the fund code, title, and active status for
each fund.

 OBJECT1 – Identifies the object1 code, description, and
active status for the first level of the object code.

 OBJECT2 – Identifies the object1-2 codes, description, and
active status for the second level of the object code.

 OBJECT3 – Identifies the object1-3 codes, description, and
active status for the third level of the object code.

 OBJECT4 – Identifies the object1-4 codes, description, and
active status for the fourth level of the object code.

Enterprise Systems Engineering 25 Final (04/11/2002)

 ORG1 – Identifies the org1 code, description, and active status
for the first level of the organization code.

 ORG2 – Identifies the org1-2 codes, description, and active
status for the second level of the organization code.

 ORG3 – Identifies the org1-3 codes, description, and active
status for the third level of the organization code.

 ORG4 – Identifies the org1-4 codes, description, and active
status for the fourth level of the organization code.

 ORG5 – Identifies the org1-5 codes, description, and active
status for the fifth level of the organization code.

 ORG6 – Identifies the org1-6 codes, description, and active
status for the sixth level of the organization code.

 ORG7 – Identifies the org1-7 codes, description, and active
status for the seventh level of the organization code.

 DW_PAYMENT_OFFICE_DIM – Identifies the payment
office code and the name.

 PROGRAM1 – Identifies the program1 code, description, and
active status for the first level of the program code.

 PROGRAM2 – Identifies the program1-2 codes, description,
and active status for the second level of the program code.

 PROGRAM3 – Identifies the program1-3 codes, description,
and active status for the third level of the program code.

 PROGRAM4 – Identifies the program1-4 code, description,
and active status for the fourth level of the program code.

 PROJECT – Identifies the project code, fund and program1-4
codes associated it, description, and active status.

 TASK – Identifies the project code, task code, description, and
active status.

 VENDOR_CONTROL – Provides information about vendors.

 VENDOR_DETAIL – One-to-many child relationship to
VENDOR_CONTROL. Provides address information about a
vendor. One vendor may have multiple addresses (e.g., one
address for purchasing, a different address for payments).

Enterprise Systems Engineering 26 Final (04/11/2002)

3.3 NOAA Data Mart Population

Immediately after the CAMS Data Warehouse Update is complete, the NOAA
Data Mart Refresh process will be started. This process will execute a series
of routines to obtain new records from the CFS TRIAL table, newly approved
records from BUDGET_CONTROL and BUDGET_DETAIL, newly
approved labor transactions from GJ_CONTROL, GJ_DETAIL, and
GJ_EMPLOYEE, and delta snapshots of CFS source tables to update the
NOAA Data Mart tables.

These routines will be launched and controlled through a UNIX shell script to
be run through a cron tab.

The following sections summarize the method in which the various NOAA
Data Mart tables will be populated.

3.3.1 Refresh Initiation

The NOAA Data Mart refresh initiation process (NDW901_INITIATE.SQL)
will allow either a new refresh to be started or a stopped refresh to be
restarted. This routine accepts two parameters:

Parameter 1: Indicates whether the routine is a new refresh (NEW) or a
restart of a stopped refresh (RESTART).

Parameter 2: Indicates the Refresh ID Number to be restarted.

This routine performs the following major functions:

 Ensures that the operator has not requested that all NDW batch
processes be stopped. If this is the case, a NDW refresh cannot
be run.

 If the request is to restart a previous refresh run, ensure that the
run exists and that it was stopped before all transactions could
be processed. Update the Refresh Restart counter by 1.

 If the request is to start a new refresh, ensure there are no
active NDW refresh jobs running (only one NDW refresh
process should be running at a time).

 Determine the maximum TRIAL_ID’s for all records and for
those in specified groups. These TRIAL_ID’s will be used to
determine if a job has run through completion or not.

 Determine the maximum MODIFICATION_DATE and
TRANS_NO combination for newly approved
BUDGET_CONTROL records. These key fields will be used

Enterprise Systems Engineering 27 Final (04/11/2002)

to determine if the BOP refresh jobs have run through
completion or not.

 Determine the maximum MODIFICATION_DATE and
TRANS_NO combination for newly approved GJ_CONTROL
records. These key fields will be used to determine if the labor
refresh jobs have run through completion or not.

 Will compare the maximum fields to the previous refresh to
determine if there is a difference. If ALL of the fields are the
same as those from the previous refresh, a message will be
written to the NDW_PROCESS_LOG and the refresh will be
stopped.

 Create an entry in the NDW_REFRESH_RUN_CONTROL
table that assigns a unique Refresh Run ID to the job. This
entry is used to track the status of the refresh run.

Detailed specifications for this routine are provided in Section 4.1.1, Initiate
NOAA Data Warehouse Refresh Process.

3.3.2 Assigning Unique ACCS ID’S

In order to improve performance for the batch updating of data mart tables
from TRIAL, the NOAA Data Mart will assign a unique ACCS ID code to
each unique ACCS combination found within TRIAL. Once assigned, the
comparison between ACCS codes between the detail and summary tables will
be performed by the NDW_ACCS_ID (defined as a NUMBER field) versus
the combination of ACCS elements (47 positions).

The NDW902_REFRESH.SQL routine performs the following major
functions:

 For each new TRIAL record within the NOAA Data Mart,
compare the relevant ACCS elements to the elements in the
NDW_ACCS_ID_CONTROL table.

 For each new combination, create an entry in the
NDW_ACCS_ID_CONTROL table and a subordinate entry in
the NDW_ACCS_ID_MAP table reflecting the TRIAL_ID.

 If the combination already exists, create a subordinate entry in
the NDW_ACCS_ID_MAP table reflecting the TRIAL_ID.

Detailed specifications for this routine are provided in Section 4.1.2, Assign
ACCS ID’s .

Enterprise Systems Engineering 28 Final (04/11/2002)

3.3.3 Refreshing Tables

The NOAA Data Mart is comprised of several refresh routines to populate the
tables that may be run in parallel. These processes follow a standard set of
guidelines that will not be repeated in the subsections that follow:

 Obtain the Refresh ID Number from the
NDW_REFRESH_RUN_CONTROL table where the
ACTIVE_STATUS field is set to “Y”. This number is used to
uniquely identify the refresh run. The table entry contains
control total and status information concerning the refresh
process for this run. Log entries are made and the process is
terminated if either no entry or more than one entry is found.

 Increments the Pass Number for the specific refresh routine by
1. Refresh routines can have one of two or both of the
following parameters in the NDW_DEFAULTS table
associated with it. The first, ROUTINE_RECORDS_TO_
PROCESS, identifies how many records to process at a time.
This allows the routine to segment larger volumes of data into
smaller processing increments if necessary for better
performance. If there are more records to be refreshed than the
number of records this routine will process at a time, additional
passes will be performed. The second parameter, ROUTINE_
RECORDS_TO_COMMIT indicates how often to commit.
This helps control the database rollback segment from getting
too large and commits the process log entries to aid in
monitoring job progress and debugging.

 Checks to see if the CFS snapshots are complete. If the
snapshots of CFS production tables has not completed, the
routine will be terminated.

 At the beginning of the job and at each commitment point,
checks to see if the operator has requested that NDW batch
processes should be stopped (END_NDW_BATCH_
PROCESSES_FLAG in the NDW_DEFAULTS table). If this
flag is set to “Y”, log and control records are updated and the
process is terminated.

 Obtains the last control fields that were processed by this
routine. The control field used may vary from process to
process. For example, the routine to refresh the
NDW_GL_ACCT_SUMMARY table uses the TRIAL_ID
field as it’s indicator of the last record processed. However,
the routine to refresh the NDW_BOP_SUMMARY uses a
combination of the BUDGET_CONTROL
MODIFICATION_DATE and TRANS_NO. The values

Enterprise Systems Engineering 29 Final (04/11/2002)

should be the same between processes, but may be different if
the operator stopped the process (versus the jobs running
through completion). These fields are then updated at the
completion of the process.

 Whenever ANY transaction record is created, the
NDW_CREATION_DATE,
NDW_CREATION_USER_NAME, and
NDW_CREATION_DEVICE fields are updated.

 Whenever ANY transaction or support table record is updated,
the NDW_LAST_MOD_DATE,
NDW_LAST_MOD_USER_NAME, and
NDW_LAST_MOD_DEVICE fields are updated.

 The number of records and a control total are tracked for each
refresh routine and these figures are reflected in the
NDW_PROCESS_LOG at each commit point and at the end of
the process.

 Log records are written at the start of the job, whenever an
exception condition is encountered, and at the end of the job.
These records are retained within the NDW_PROCESS_LOG
table and are also written as a formatted report which is stored
on the server using a standard naming convention.

 The NDW_REFRESH_RUN_CONTROL record for the
refresh run is updated at the end of the routine to indicate the
last pass number and the maximum value processed. This
entry allows the operator to easily review the status of each of
the processes for a specific refresh run.

3.3.3.1 Refresh NDW_GL_ACCT_SUMMARY

The NDW_GL_ACCT_SUMMARY table summarizes TRIAL data by
standard general ledger account/sub-account number, month and fiscal year
(based on general ledger accounting period), and ACCS. This groups the data
at the lowest standard general ledger level for all account numbers that can be
generated through CFS – not just those required by the Line/Field Office
commitment tracking/MIS interfaces.

The NDW001_REFRESH.SQL routine performs the following major
functions:

 Read a specified number of TRIAL records and group them by
ACCOUNT_NO, SUB_ACCOUNT_NO, GL_END_DATE,
FISCAL_YEAR, FUND_CODE_FISCAL_YEAR,
NDW_ACCS_ID (by linking TRIAL_ID to

Enterprise Systems Engineering 30 Final (04/11/2002)

NDW_ACCS_ID_MAP table), and BALANCE_FLAG (by
linking ACCOUNT_NO and SUB_ACCOUNT_NO to
CHART table).

 Match the NDW_ACCS_ID, fund code fiscal year, and
GL_END_DATE to the elements in the
NDW_GL_ACCT_SUMMARY table.

 If a match is found, add the TRIAL credit amount, debit
amount, net amount, and labor hours (if applicable) to the
NDW_GL_ACCT_SUMMARY values.

 If match is not found, create an entry with the credit amount,
debit amount, net amount, and labor hours (if applicable).

Detailed specifications for this routine are provided in Section 4.2, NOAA
Data Mart Summary Table Refresh (NDW001_REFRESH.SQL).

3.3.3.2 Refresh NDW_FIN_CAT_SUMMARY

The NDW_FIN_CAT_SUMMARY table summarizes TRIAL data at one
level higher than the NDW_GL_ACCT_SUMMARY. In this table, one or
more standard general ledger accounts/sub-accounts are combined into one or
more NOAA-defined categories. Categories are defined or can be changed at
the beginning of a fiscal year. The definition of financial categories as
defined by NOAA for this table is shown in Figure 7.

Financial
Category

Account
Number Description

COMMIT – Commitments
COMMIT 4700 COMMITMENTS

OBLIG - Obligations
OBLIG 4801 UNDELIVERED ORDERS - OBLIGATIONS, UNPAID

OBLIG 4802
UNDELIVERED ORDERS - OBLIGATIONS,
PREPAID/ADVANCED

OBLIG 4881 UPWARD ADJ OF PY UDO-OBLIGATIONS, UNPAID

OBLIG 4882
UPWARD ADJ OF PY UDO-OBLIGATIONS,
PREPAID/ADVANCED

OBLIG 4901 DELIVERED ORDERS - OBLIGATIONS, UNPAID
OBLIG 4902 DELIVERED ORDERS - OBLIGATIONS, PAID

OBLIG 4981
UPWARD ADJ OF PY DELIVERED ORDERS-OBLIGATIONS,
UNPD

OBLIG 4982
UPWARD ADJUSTMENT OF PY DEL ORDERS-
OBLIGATIONS, PD

UDO – Undelivered Orders
UDO 4801 UNDELIVERED ORDERS - OBLIGATIONS, UNPAID

UDO 4802
UNDELIVERED ORDERS - OBLIGATIONS,
PREPAID/ADVANCED

Enterprise Systems Engineering 31 Final (04/11/2002)

Financial
Category

Account
Number Description

UDO 4881 UPWARD ADJ OF PY UDO-OBLIGATIONS, UNPAID

UDO 4882
UPWARD ADJ OF PY UDO-OBLIGATIONS,
PREPAID/ADVANCED

UDO_DWADJ – Undelivered Orders – Downward Adjustments

UDO_DWADJ 4871
DOWNWARD ADJ OF PY UNPAID UDO-OBLIGATIONS,
RECOVERY

UDO_DWADJ 4872
DOWNWARD ADJ OF PY PREPAID/ADV UDO-OBL,
REFUNDS COL

UEXP – Unpaid Expenses
UEXP 4901 DELIVERED ORDERS - OBLIGATIONS, UNPAID

UEXP 4981
UPWARD ADJ OF PY DELIVERED ORDERS-OBLIGATIONS,
UNPD

PEXP – Paid Expenses
PEXP 4902 DELIVERED ORDERS - OBLIGATIONS, PAID

PEXP 4982
UPWARD ADJUSTMENT OF PY DEL ORDERS-
OBLIGATIONS, PD

UEXP_DWADJ – Unpaid Expenses – Downward Adjustments

UEXP_DWADJ 4971
DOWNWARD ADJ OF PY UNPD DELIVERED ORDERS-OBL,
RECOV

PEXP_DWADJ – Paid Expenses – Downward Adjustments

PEXP_DWADJ 4972
DOWNWARD ADJ OF PY PAID DEL ORDERS-OBL,
REFUNDS COL

Figure 7. NOAA Data Mart Financial Category Definitions

The NDW002_REFRESH.SQL routine performs the following major
functions:

 For each new TRIAL record within the NOAA Data Mart,
determine the financial category(s) under which the record
applies. Note that one transaction can be included under more
than one financial category. For example, NOAA’s definition
of an obligation is equal to the undelivered orders plus unpaid
expenses plus paid expenses. Therefore, the amount for an
undelivered order transaction would be included in both the
OBLIG and UDO financial categories.

 Match the TRIAL_ID to the TRIAL_ID in the
NDW_ACCS_ID_MAP table to obtain the NDW_ACCS_ID
for the TRIAL record.

 Match the NDW_ACCS_ID, fund code fiscal year, and
GL_END_DATE to the elements in the
NDW_FIN_CAT_SUMMARY table.

 If a match is found, compute the net amount and add the net
amount and labor hours (if applicable) to the
NDW_FIN_CAT_SUMMARY values fields for the financial

Enterprise Systems Engineering 32 Final (04/11/2002)

category(s) to which the transaction belongs. Note that the
NDW_FIN_CAT_SUMMARY shows the values for all
defined categories within the row. Therefore, only a single
row needs to be read to obtain all financial category amounts
for a unique ACCS for the month.

 If match is not found, compute the net amount and create an
entry setting the net amount and labor hours (if applicable) to
the NDW_FIN_CAT_SUMMARY value fields for the
financial category(s) to which the transaction belongs.

Detailed specifications for this routine are provided in Section 4.2.2, Refresh
NDW_FIN_CAT_SUMMARY Table.

3.3.3.3 Refresh NDW_BOP_SUMMARY

Budget Operating Plans are created within CFS through the FM066 screen,
Budget Operating Plan Transaction Screen. The NDW_BOP_SUMMARY
table summarizes BOP data at the Fiscal Year, budget month, ACCS level.

The NDW003_REFRESH.SQL routine performs the following major
functions:

 For each newly approved BUDGET_CONTROL and
BUDGET_DETAIL record within the NOAA Data Mart,
match the ACCS elements, fiscal year, and budget month to the
elements in the NDW_BOP_SUMMARY table.

 If a match is found, add the BUDGET_DETAIL amount and
STAT_UNIT_QTY (FTE amount) to the
NDW_BOP_SUMMARY values.

 If match is not found, create an entry with the amount and
STAT_UNIT_QTY (FTE amount).

Detailed specifications for this routine are provided in Section 4.2.3, Refresh
NDW_BOP_SUMMARY Table.

3.3.3.4 Refresh NDW_COMMIT_TRANS

The NDW010_REFRESH.SQL routine will update the NDW_COMMIT_
TRANS table with new TRIAL records.

Commitments are identified in TRIAL as having an ACCOUNT_NO = 4700.
As commitments are currently not being processed within CFS, they are
considered a priority 3 item and will be addressed at a later point.

Enterprise Systems Engineering 33 Final (04/11/2002)

3.3.3.5 Refresh NDW_AP_TRANS

The NDW011_REFRESH.SQL routine will update the NDW_AP_TRANS
table with new TRIAL obligation and expense records.

Obligations are identified in TRIAL as having an ACCOUNT_NO between
4800 and 4899. Expenses are identified in TRIAL as having an
ACCOUNT_NO between 4900 and 4999. The definitions for the obligation
and expense standard general ledger account numbers are provided in Figure
8. The NDW_AP_TRANS refresh routine will process all 4800 through 4999
standard general ledger account numbers.

Account Number Description
Obligation Accounts

4800 UNDELIVERED ORDERS
4801 UNDELIVERED ORDERS - OBLIGATIONS, UNPAID
4802 UNDELIVERED ORDERS - OBLIGATIONS, PREPAID/ADVANCED
4831 UNDELIVERED ORDERS, TRANSFERRED-UNPAID – IN
4831 UNDELIVERED ORDERS, TRANSFERRED-UNPAID - OUT
4832 UNDELIVERED ORDERS, TRANSFERRED-PAID – IN
4832 UNDELIVERED ORDERS, TRANSFERRED-PAID – OUT
4870 DOWNWARD ADJ OF PY UDO

4871
DOWNWARD ADJ OF PY UNPAID UDO-OBLIGATIONS,
RECOVERY

4872
DOWNWARD ADJ OF PY PREPAID/ADV UDO-OBL, REFUNDS
COL

4880 UPWARD ADJ OF PY UDO
4881 UPWARD ADJ OF PY UDO-OBLIGATIONS, UNPAID
4882 UPWARD ADJ OF PY UDO-OBLIGATIONS, PREPAID/ADVANCED

Expense Accounts
4900 EXPENDED AUTHORITY
4901 DELIVERED ORDERS - OBLIGATIONS, UNPAID
4902 DELIVERED ORDERS - OBLIGATIONS, PAID
4931 DELIVERED ORDERS -OBLIGATIONS TRANSFERRED, UNPD-IN

4931
DELIVERED ORDERS -OBLIGATIONS TRANSFERRED, UNPD-
OUT

4971
DOWNWARD ADJ OF PY UNPD DELIVERED ORDERS-OBL,
RECOV

4972
DOWNWARD ADJ OF PY PAID DEL ORDERS-OBL, REFUNDS
COL

4979 DOWNWARD ADJ OF PY EXP AUTH - OTHER
4980 UPWARD ADJUSTMENT OF PY EXPENDED AUTHORITY

4981
UPWARD ADJ OF PY DELIVERED ORDERS-OBLIGATIONS,
UNPD

4982 UPWARD ADJUSTMENT OF PY DEL ORDERS-OBLIGATIONS, PD

Enterprise Systems Engineering 34 Final (04/11/2002)

Figure 8. Obligation and Expense Account Numbers in Trial

The NDW011_REFRESH.SQL routine performs the following major
functions:

 Select new TRIAL records within the NOAA Data Mart with
an ACCOUNT_NO between 4800 and 4999.

 Determine the type of transaction based on the
ACCOUNT_NO, SUBSYSTEM_CODE, and
TRANS_SOURCE.

 Based on the type of transaction, refer back to the source tables
to obtain the information required in the NDW_AP_TRANS
table.

 Determine if the transaction is a reversing entry for that
account type and tag it as such. The transaction tables will
store both the transaction that created the charge (e.g., a
purchase order creates an unpaid, undelivered order
transaction) as well as a transaction that reverses (or liquidates)
the charge. For example, when a receiving ticket is received,
the unpaid, undelivered order charge is liquidated and the
charge now becomes an unpaid, delivered order.

 Determine if the transaction is a prior year transaction and tag
it as such.

 Determine if the transaction is a labor record and tag it as such.

 Populate the fields within the NDW_AP_TRANS table and
stores the record.

Detailed specifications for this routine are provided in Section 4.3.2, Refresh
Accounts Payable Transaction Table From Trial.

3.3.3.6 Refresh NDW_BOP_DETAIL

The NDW012_REFRESH.SQL routine will update the NDW_BOP_DETAIL
table with newly approved Budget Operating Plan data.

Newly approved BOPs will be selected as having an APPROVED_FLAG =
“Y” and a MODIFICATION_DATE (includes time) and TRANS_NO
combination greater than the last modification date/time and TRANS_NO
combination previously processed.

The NDW012_REFRESH.SQL routine performs the following major
functions:

Enterprise Systems Engineering 35 Final (04/11/2002)

 Select newly approved BUDGET_CONTROL and
BUDGET_DETAIL records within the NOAA Data Mart.

 For each new BUDGET_DETAIL record, create an entry in
the NDW_BOP_DETAIL table.

Detailed specifications for this routine are provided in Section 4.3.3, Refresh
Transaction Tables From Budget Tables.

3.3.3.7 Refresh NDW_LABOR_DETAIL

The NDW013_REFRESH.SQL routine will update the
NDW_LABOR_DETAIL table with new GJ_CONTROL, GJ_DETAIL, and
GJ_EMPLOYEE labor data resulting from the NFC interface (NFC002), labor
detail adjustments made through the CFS NFC005 screen, and month end
transaction defaults generated through the NFC004 routine.

The NDW013_REFRESH.SQL routine performs the following major
functions:

 Select newly approved GJ_CONTROL, GJ_DETAIL, and
GJ_EMPLOYEE records within the NOAA Data Mart.

 For each new GJ_EMPLOYEE record, create an entry in the
NDW_LABOR_DETAIL table.

Detailed specifications for this routine are provided in Section 4.3.4, Refresh
Detailed Labor Data (NDW013_REFRESH.SQL).

3.3.3.8 Refresh NDW_RESERV_TRANS

The logic for populating the NDW_RESERV_TRANS table will be provided
as part of priority 2 efforts (not in the initial phase).

3.4 Data Integrity

A number of mechanisms will be implemented as part of the NOAA Data
Mart to ensure data integrity. These include:

 Storing relevant data within the
NDW_REFRESH_RUN_CONTROL table that identifies the
target numbers to be processed and the status of the refresh
routines in meeting those targets.

 Frequent entries within the NDW_PROCESS_LOG table to
record the beginning and ending status of batch processes, and
interim status messages for performance monitoring and
debugging.

Enterprise Systems Engineering 36 Final (04/11/2002)

 A refresh status report that will compare control totals between
the TRIAL and relevant CFS source tables to the NOAA Data
Mart tables to ensure they balance.

3.5 Line Office Extract Processing

Each Line/Field Office will be responsible for developing the extract routines
necessary to obtain the data for their commitment tracking systems.

Several fields have been established within each table from which Line/Field
Offices may extract data. These fields are provided so that the Line/Field
Office may indicate that a row was extracted (and for some tables may not
want to be extracted again) and track how many times a row is extracted.

For the transaction tables, once a row is populated, it should not be changed.
Therefore, the extracting routine need only extract any particular row once.

For the summary tables, any open accounting period may have data updated
until that accounting period is closed. In these cases, the Line/Field Office
may wish to re-extract either all records on a daily basis or only those that
have been changed. Note that the amounts on summary table records are
changed to reflect the new transactions processed – the delta is not stored.
Records may be identified as being changed after a Line/Field Office extract
by the NDW_LAST_MOD_DATE being greater than the Line/Field Office
LAST_EXTRACT_DATE.

There is one group of extract fields provided for each Line Office plus an
additional ten groups for other commitment tracking/MIS systems requiring
separate extracts. The Line Office extract fields are all prefixed by the Line
Office acronym (e.g., “OFA_”, “OMAO_”, “NOS_”, etc.). The additional
groups have a sequential number prefix beginning with “01_” through “10_”.

The extract fields that are provided are shown in Figure 9 (note that the
“OFA_” prefix is used as an example):

Extract Field Name Data Type Definition
OFA_ORIGINAL_EXTRACT_
DATE

DATE The date that this record was
originally extracted by this
Line/Field Office.

Will be populated with the system
date.

Enterprise Systems Engineering 37 Final (04/11/2002)

Extract Field Name Data Type Definition
OFA_ORIGINAL_USER_
NAME

VARCHAR2(30) Name of user who executed the
routine that originally extracted data
from this record for this Line/Field
Office.

Will be populated with the user’s
name derived from the Oracle user
account of the user running the
extract.

OFA_ORIGINAL_DEVICE_
NAME

VARCHAR2(30) Name of device used when the
record was originally extracted for
this Line/Field Office.

Will be populated with the word
“BATCH” followed by the name of
the routine that extracted the record.

OFA_LAST_EXTRACT_DATE DATE The last date that data was extracted
from this record for this Line/Field
Office.

Will be populated with the system
date.

OFA_LAST_USER_NAME VARCHAR2(30) Name of user who executed the
routine that last extracted data from
this record for this Line/Field
Office.

Will be populated with the user’s
name derived from the Oracle user
account of the user running the
extract.

OFA_LAST_DEVICE_NAME VARCHAR2(30) Name of device used when the
record was last extracted for this
Line/Field Office.

Will be populated with the word
“BATCH” followed by the name of
the routine that extracted the record.

OFA_EXTRACT_ITERATION NUMBER(2) The number of times the data from
this record was extracted for this
Line/Field Office.

Will be incremented by 1 each time
the record is extracted by this
Line/Field Office.

Figure 9. Line/Field Office Extract Fields

A database package (NDW_RECORD_LO_EXTRACT) will be developed as
part of the NOAA Data Mart for Line/Field Office extract use. This package
will perform the following major functions:

 Calling routine will pass the Line/Field Office extract prefix
(e.g., “OFA”, “OMAO”, “01”, “02”, etc.), the table name and

Enterprise Systems Engineering 38 Final (04/11/2002)

NDW_TRANS_NO of the record being extracted, and the
name of the routine performing the extract.

 If the table or row cannot be found, a message will be returned
to the calling routine.

 The database package will determine the User Name.

 Package will check if the pre_ORIGINAL_EXTRACT_DATE
is null for the row ID of the table requested. If so, it will
update the ORIGINAL extract fields as shown in the table.

 Will populate the pre_LAST_MOD extract fields as shown in
the table for all extracts (for the original extract, the
ORIGINAL and LAST_MOD values will be the same).

Detailed specifications for this routine are provided in Section 4.4.1,
NDW_RECORD_LO_EXTRACT.

3.6 Line Office On-Line Access

In addition to the designated users having access to the NOAA Data Mart
tables for extracting to the Line/Field Office commitment tracking/MIS
systems, much of this data will also be available to managers and finance
users. On-line access for users will be available as customized reports and
queries (to be developed as a separate effort) through the Navigator Menu.

Oracle Discoverer will also be implemented as a web-based capability for
users accessing data through defined business areas and shared worksheets
(predefined queries) or for producing their own ad-hoc queries. Note that the
implementation of Oracle Discoverer, definition of business areas, and
development of on-line queries and reports through Discoverer are not being
performed within this project. They are being performed through other
NOAA efforts.

The specific tables and data elements users will be able to access on-line will
be enforced through database roles as described in Section 3.8, Data Security.

3.7 Refresh Recovery

The NOAA Data Warehouse project will be defining the requirements,
standards, and logic for ensuring that data populated through refresh routines
can be backed out and repopulated if necessary. Once these standards are
defined, the approach will be incorporated into the NOAA Data Mart.

Enterprise Systems Engineering 39 Final (04/11/2002)

3.8 Data Security

The NOAA Data Warehouse (NDW) is implemented under the Oracle
Relational Database Management System (RDBMS) Version 8.1.6.x running
on the Cumulus Server located at the ITC in Largo, Maryland. Access to any
CAMS database and application software, requires that a user is authorized
and has a valid user ID and password. All CAMS data and applications
enforce controls, audit-ability, and access restrictions based on the NOAA
CAMS approved security plan. CAMS applications restrict access based on
functional and database-enforced roles, database views, segregation of duties,
and presentation of menu options/applications based on preauthorized access
approval. Privacy Act, procurement sensitive, and non-classified business
sensitive data are all protected within approved NOAA guidelines. User
access to data is limited based on the appropriate controls enforced at the
database, application, table, and data content level (e.g., via roles and views).

The NDW will enforce at least three (3) user access levels to data within the
data warehouse. All controls specified above are enforced with the additional
clarification on access to the data, including:

1. Extract users who will have access to all data related to their
organization for the purposes of populating official
organizational commitment tracking/MIS systems. Extract
users are generally privileged, batch oriented programs that
extract data from the NDW for purposes of populating a
different system.

2. Full access (all data content for a particular organization) to all
authorized data and associated NDW applications. There may
be multiple roles or database views depending on the
data/tables that need to be accessed. The use of database roles
and views will enable access to all columns within a row.

3. End-user access is restricted to a subset of data and tables that
the user is authorized to view. Database roles and views limit
or restrict access to columns in rows where privacy act and/or
other sensitive information may reside.

Data access via Open Database Connectivity (ODBC) shall not be supported.

3.8.1 Database Roles

Access to NOAA Data Warehouse tables, rows within tables, and columns
within a row for formal extract, update, and query will be enforced through
database roles and views assigned to users. There are at least two (2) template
roles that will exist:

Enterprise Systems Engineering 40 Final (04/11/2002)

 NDW_USER – Assigned to all users who will have access to
the NOAA Data Mart. A view(s) that allows access to
unrestricted data is associated with this role.

 NDW_PRIV_ACT_USER – Assigned to those users who will
have access to records within the NOAA Data Mart with a
PRIVACY_ACT_APPLIES = “Y”. There may be multiple
views associated and possibly multiple roles based on this
template.

The templates will be used to construct roles and views that allow for
access to be controlled based on the type of data presented in the data
warehouse. Transaction data segregated by generic, labor, privacy act,
procurement sensitive, etc. will need views and associated roles to
limit which information is generally available via extract and on-line
query access.

3.8.2 Privacy Act Data

Each table has a column titled “PRIVACY_ACT_APPLIES”. Based on
NOAA-defined business rules, records containing data to which the Privacy
Act applies will have this field populated with a “Y”.

A separate database role will be established and granted to users who should
have access to data controlled by the Privacy Act. Users without this role will
not be able to access those records.

Enterprise Systems Engineering 41 Final (04/11/2002)

4. Detailed Design

4.1 NOAA Data Mart Refresh

In addition to the refresh routines that populate the various NOAA Data Mart
tables, the system includes several other routines that manage the refresh
process and perform data integrity checks.

The NOAA Data Mart includes the refresh routines identified Figure 10 that
are describe in detail in the sections that follow.

Routine Name Routine Description

NDW901_INITIATE.SQL Initiates the start of a NOAA Data Warehouse
Refresh.

NDW902_REFRESH.SQL Updates the NDW_ACCS_ID_CONTROL and
NDW_ACCS_ID_MAP tables to reflect unique
ACCS combinations.

NDW001_REFRESH.SQL Populates the NDW_GL_ACCT_SUMMARY table.

NDW002_REFRESH.SQL Populates the NDW_FIN_CAT_SUMMARY table.

NDW003_REFRESH.SQL Populates the NDW_BOP_SUMMARY table.

NDW010_REFRESH.SQL Populates the NDW_COMMIT_TRANS (priority 3)
table.

NDW011_REFRESH.SQL Populates the NDW_AP_TRANS table.

NDW012_REFRESH.SQL Populates the NDW_BOP_DETAIL table.

NDW013_REFRESH.SQL Populates the NDW_LABOR_DETAIL table.

NDW014_REFRESH.SQL Populates the NDW_RESERV_TRANS table.

NDW050.SQL Determines any change in a General Ledger
accounting period’s status and updates the
MONTH_CLOSED_FLAG flag within the summary
tables for that accounting period.

Figure 10. NOAA Data Mart Refresh Routines

Enterprise Systems Engineering 42 Final (04/11/2002)

4.1.1 Initiate NOAA Data Warehouse Refresh Process (NDW901_INITIATE.SQL)

The NDW901_INITIATE.SQL routine will launch the NOAA data warehouse
refresh process and ensure that these processes are coordinated and run
through completion. This process creates an entry in the
NDW_REFRESH_RUN_CONTROL table, assigns a unique identifier to the
refresh process, and determines the maximum TRIAL_ID numbers that should
be processed for a routine to be considered complete. The subordinate refresh
processes will then query this record and update it with their statuses as they
complete.

Routine Name

NDW901_INITIATE.SQL

Input:

This routine will be invoked through a regularly scheduled cron job and uses
the following data as input:

 Parameters

 NEW or RESTART

 REFRESH_ID_NO

 CAMS Data Warehouse Tables:

 TRIAL (TR)

 BUDGET_CONTROL (BC)

 GJ_CONTROL (GC)

 NOAA Data Mart Tables:

 NDW_MAXSEQNOS (NM)

 NDW_DEFAULTS (ND)

 NDW_REFRESH_RUN_CONTROL (NRRC)

Output:

This routine will produce the following return parameters, output files,
database tables, and/or reports:

 NOAA Data Mart Tables:

 NDW_REFRESH_RUN_CONTROL (NRRC)

Enterprise Systems Engineering 43 Final (04/11/2002)

 NDW_MAXSEQNOS (NM)

 NDW_PROCESS (NP)

 Reports:

 NDW901_RE999_PASS000.log (if database is available).
 NDW901_yyyymmdd.log (if database is not available).
 Only keep 10 versions of NDW901 log files in the

directory.

Processing Logic:

Begin Routine
Write date/time started to .log file.
Write header information to .log file.

Validate parameters.
If Parameter 1 does not = “NEW” or “RESTART”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW901_INITIATE.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: NDW901_INITIATE Parameter 1 not equal to
NEW or RESTART ”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

If Parameter 1 = “NEW” and Parameter 2 is specified
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW901_INITIATE.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: WARNING: NDW901_INITIATE Parameter 1
= NEW and Parameter 2 provided: ” followed by the Parameter 2 value.

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Do not terminate processing.

Determine if a refresh is already running. There should be only one refresh run active at
any time, although multiple processes may be run in parallel.
Read REFRESH_ID_NO
 From NDW_REFRESH_RUN_CONTROL (NRRC)
 Where ACTIVE_STATUS = “Y”.

If an entry is found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW901_INITIATE.SQL”
 DATE_TIME = system date/time
 REFRESH_ID_NO = NRRC.REFRESH_ID_NO

STEP_DESCR = “NDW-000TBD: NDW refresh already in process with
REFRESH_ID_NO noted.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.

Enterprise Systems Engineering 44 Final (04/11/2002)

 Terminate processing.

Determine if ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
Read VALUE(s)
 From NDW_DEFAULTS (ND)
 For ITEM_NAME = “END_NDW_BATCH_PROCESSES_FLAG”

If entry cannot be found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW901_INITIATE.SQL”
 REFRESH_ID = Parameter 2
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Entry not found in NDW_DEFAULTS for
ITEM_NAME: ??”.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW901_INITIATE.SQL”
 REFRESH_ID = Parameter 2
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Determine if CAMS Data Warehouse snapshots are complete.

If they are not complete, set the CFS_SNAPSHOTS_COMPLETE field in the
NDW_REFRESH_RUN_CONTROL table to “N”.

RESTART REFRESH STOPPED BY OPERATOR
Restart refresh that was previously stopped by the operator.
If Parameter 1 = “RESTART”

Find refresh routine specified in parameter.
Read REFRESH_ID_NO, REFRESH_STOPPED_BY_OPERATOR,
REFRESH_RESTART_NO

 From NDW_REFRESH_RUN_CONTROL (NRRC)
 Where NRRC.REFRESH_ID_NO = Parameter 2

 If an entry is not found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW901_INITIATE.SQL”
 DATE_TIME = system date/time
 REFRESH_ID_NO = Parameter 2

STEP_DESCR = “NDW-000TBD: NDW refresh job to restart not found.”
 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

 If NRRC.REFRESH_STOPPED_BY_OPERATOR = “N”

Enterprise Systems Engineering 45 Final (04/11/2002)

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW901_INITIATE.SQL”
 DATE_TIME = system date/time
 REFRESH_ID_NO = Parameter 2

STEP_DESCR = “NDW-000TBD: NDW refresh job was not stopped by the
operator.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Update NDW_REFRESH_RUN_CONTROL
 Update NDW_REFRESH_RUN_CONTROL
 For record with REFRESH_ID_NO = Parameter 2
 Set REFRESH_STOPPED_BY_OPERATOR to “N”
 Set ACTIVE_STATUS = “Y”
 Set REFRESH_RESTART_NO to NRRC.REFRESH_RESTART_NO + 1

 If record cannot be updated:
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW901_INITIATE.SQL”
 REFRESH_ID = Parameter 2
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Could not update
NDW_REFRESH_RUN_CONTROL table.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

 Perform Close Routine.
Else

START NEW REFRESH

Determine next REFRESH_RUN_ID. There should be only one refresh run active at any
time, although multiple processes may be run in parallel.
Obtain next sequential number from NDW_MAXSEQNOS and update table
 Where TABLE_NAME = “NDW_REFRESH_RUN_CONTROL”
If no entry found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW901_INITIATE.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: No entry found in NDW_MAXSEQNOS for
TABLE_NAME = NDW_REFRESH_RUN_CONTROL.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Determine maximum TRIAL_ID values.
Read from TRIAL to determine:
 Maximum TRIAL_ID (for all account numbers)
 Maximum TRIAL_ID for records with ACCOUNT_NO = 4700
 Maximum TRIAL_ID for records with ACCOUNT_NO between 4800 and 4899
 Maximum TRIAL_ID for records with ACCOUNT_NO between 4900 and 4999

Determine maximum BUDGET_CONTROL key field values.

Enterprise Systems Engineering 46 Final (04/11/2002)

Read from BUDGET_CONTROL to determine:
 Where APPROVED_FLAG = “Y”
 Maximum MODIFICATION_DATE || TRANS_NO

Determine maximum GJ_CONTROL key field values (for labor detail).
Read from GJ_CONTROL to determine:
 Where MANAGER_FLAG = “Y”
 Maximum MODIFICATION_DATE || TRANS_NO

Create entry in NDW_REFRESH_RUN_CONTROL.
Insert record into NDW_REFRESH_RUN_CONTROL
 Set REFRESH_ID_NO = next sequential number from NDW_MAXSEQNOS
 Set ACTIVE_STATUS = “Y”
 Set CFS_SNAPSHOTS_COMPLETE = “Y”
 Set MAX_TRIAL to maximum TRIAL_ID (for all account numbers)
 Set MAX_4700 to maximum TRIAL_ID for records with ACCOUNT_NO = 4700

Set MAX_48XX to maximum TRIAL_ID for records with ACCOUNT_NO between
4800 and 4899
Set MAX_49XX to maximum TRIAL_ID for records with ACCOUNT_NO between
4900 and 4999
Set MAX_BUDGET to maximum BC.TRANS_NO found within the maximum
MODIFICATION_DATE.
Set MAX_BUDGET_MOD_DATE to maximum BC.MODIFICATION_DATE found
Set MAX_LABOR to maximum GC.TRANS_NO found within the maximum
MODIFICATION_DATE.
Set MAX_LABOR_MOD_DATE to maximum GC.MODIFICATION_DATE found
Set other fields to default values as shown in Appendix C – Support Table Record
Layouts.
Set NDW_LAST_MOD fields appropriately

If record cannot be inserted:
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW901_INITIATE.SQL”
 REFRESH_ID = next sequential number from NDW_MAXSEQNOS
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Record could not be inserted in
NDW_REFRESH_RUN_CONTROL table.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

FOR RESTARTS OR NEW REFRESH RUNS

Update message in NDW_DEFAULTS table (this message may be queried by users to
determine status of data warehouse or may be displayed on a menu/report.
Update NDW_DEFAULTS for record with
 ITEM_NAME = “NDW_REFRESH_MESSAGE”

Set VALUE = “NDW REFRESH PROCESS IN PROGRESS – REFRESH ID
99999999”

Set NDW_LAST_MOD fields appropriately
If record cannot be updated:
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW901_INITIATE.SQL”
 REFRESH_ID = next sequential number from NDW_MAXSEQNOS
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Could not update NDW_DEFAULTS table.”

Enterprise Systems Engineering 47 Final (04/11/2002)

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Commit records to database.

Close Routine
Write all NDW_PROCESS_LOG records written for this routine to the .log file and close
file.
Terminate processing.

Enterprise Systems Engineering 48 Final (04/11/2002)

4.1.2 Assign ACCS ID’s (NDW902_REFRESH.SQL)

In order to improve the efficiency of performing the nightly refresh routines
that update tables based on TRIAL data, the NOAA Data Mart will assign a
unique ID for every ACCS combination (excluding Fund Code Fiscal Year
and User Defined portions). This ID may also be used in lieu of comparing
full ACCS strings between tables.

Routine Name

NDW902_REFRESH.SQL

Input:

This routine will be invoked through a regularly scheduled cron job and uses
the following data as input:

 CAMS Data Warehouse Tables:

 TRIAL (TR)

 NOAA Data Mart Tables:

 NDW_ACCS_ID_CONTROL (NAIC)

 NDW_ACCS_ID_MAP (NAIM)

 NDW_MAXSEQNOS (NM)

 NDW_DEFAULTS (ND)

 NDW_REFRESH_RUN_CONTROL (NRRC)

Output:

This routine will produce the following return parameters, output files,
database tables, and/or reports:

 NOAA Data Mart Tables:

 NDW_ACCS_ID_CONTROL (NAIC)

 NDW_ACCS_ID_MAP (NAIM)

 NDW_REFRESH_RUN_CONTROL (NRRC)

 NDW_MAXSEQNOS (NM)

 NDW_PROCESS (NP)

 Reports:

Enterprise Systems Engineering 49 Final (04/11/2002)

 NDW902_RE999_PASS000.log (if database is available).
 NDW902_yyyymmdd.log (if database is not available).
 Only keep 10 versions of NDW902 log files in the

directory.

Processing Logic:

Begin Routine
Write date/time started to .log file.
Write header information to .log file.

Determine refresh run. There should be only one refresh run active at any time, although
multiple processes may be run in parallel.
Read REFRESH_ID_NO, NDW902_REFRESH_PASS_NO,
CFS_SNAPSHOTS_COMPLETE
 From NDW_REFRESH_RUN_CONTROL (NRRC)
 Where ACTIVE_STATUS = “Y”.

If more than one entry
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW902_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: More than one active
NDW_REFRESH_RUN_CONTROL entry.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

If no entry found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW902_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: No active NDW_REFRESH_RUN_CONTROL
entry found.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Set v.REFRESH_PASS_NO = NDW902_REFRESH_PASS_NO + 1

If the snapshots of the CFS tables are not complete, terminate the job.
If NRRC.CFS_SNAPSHOTS_COMPLETE = “N”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW901_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Snapshots of CFS tables not complete.”
 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Determine maximum number of transactions to process and how often to commit.

Enterprise Systems Engineering 50 Final (04/11/2002)

Read VALUE(s)
 From NDW_DEFAULTS (ND) for the following ITEM_NAMEs
 ITEM_NAME = “NDW902_RECORDS_TO_PROCESS”
 ITEM_NAME = “NDW902_RECORDS_TO_COMMIT”
 ITEM_NAME = “END_NDW_BATCH_PROCESSES_FLAG”
If any entry cannot be found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW902_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Entry not found in NDW_DEFAULTS for
ITEM_NAME: ??”.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

If the operator has updated the ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”,
update NDW_PROCESS_LOG and terminate processing.
If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW902_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Terminate processing.
End If END_NDW_BATCH_PROCESSES_FLAG

Determine beginning transaction number that should be used for selecting records from
TRIAL for this routine.
Read LAST_TRANS_NO_PROCESSED from NDW_REFRESH_PARAMS (NRP)
 Where ROUTINE_NAME = “NDW902_REFRESH”
 And TABLE_NAME = “TRIAL”.
If no entry found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW902_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: No entry found for routine in
NDW_REFRESH_PARAMS table.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Write record to log table.
Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW902_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = NRP.LAST_TRANS_NO_PROCESSED

Enterprise Systems Engineering 51 Final (04/11/2002)

 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 STEP_DESCR = “NDW-000TBD: Routine started with TRIAL_ID > this number.”
 All other fields remain null.

Read TRIAL Records
Process only TRIAL records since the last refresh.
For each record within TRIAL (TR) where

TRIAL_ID > NRP.LAST_TRANS_NO_PROCESSED and <
NRP.LAST_TRANS_NO_PROCESSED + ND. NDW902_RECORDS_TO_PROCESS

Insert/Update NDW_ACCS_ID_CONTROL & NDW_ACCS_ID_MAP Records
Update NDW_ACCS_ID table based on TRIAL records
If TR.TRANS_SOURCE <> “BEGBAL”

Match the TRIAL record (TR) ACCS values to an existing record in
NDW_ACCS_ID_CONTROL (NAIC) – by ACCS.

Update existing record if found.
If a match is found
 Insert a subordinate NDW_ACCS_ID_MAP (NAIM) record
 Set NAIM.TRIAL_ID to TR.TRIAL_ID
 Set NAIM.NDW_ACCS_ID to NAIC.NDW_ACCS_ID
 Set NAIM.NDW_LAST_MOD_DATE to system date
 Set NAIM.NDW_LAST_MOD_USER_NAME to user’s name
 Set NAIM.NDW_LAST_MOD_DEVICE_NAME to device

Add a new record if not found.
Else (no match found)

Create a new NDW_ACCS_ID_CONTROL (NAIC) record Appendix C – Support
Table Record Layouts.

 Set NAIC.NDW_ACCS_ID to NAIC.NDW_ACCS_ID
 Set NAIC.NDW_LAST_MOD_DATE to system date
 Set NAIC.NDW_LAST_MOD_USER_NAME to user’s name
 Set NAIC.NDW_LAST_MOD_DEVICE_NAME to device

 Insert a subordinate NDW_ACCS_ID_MAP (NAIM) record

 Set NDW_ACCS_ID to next sequential number from NDW_MAXSEQNOS
Where TABLE_NAME = “NDW_ACCS_ID”.

 Set NAIM.TRIAL_ID to TR.TRIAL_ID
 Set NAIM.NDW_ACCS_ID to NAIC.NDW_ACCS_ID
 Set NAIM.NDW_LAST_MOD_DATE to system date
 Set NAIM.NDW_LAST_MOD_USER_NAME to user’s name
 Set NAIM.NDW_LAST_MOD_DEVICE_NAME to device

Update control counts.

 Add 1 to v.RECORD_COUNT.

When all records have been processed, update the NDW_REFRESH_PARAMS,
NDW_REFRESH_RUN_CONTROL, NDW_PROCESS_LOG and commit records.

 If last TRIAL record
 Update NDW_REFRESH_PARAMS
 Where ROUTINE_NAME = “NDW902_REFRESH”
 Set LAST_TRANS_NO_PROCESSED = TR.TRIAL_ID
 Set NDW_LAST_REFRESH_ID_NO = NRRC.REFRESH_ID_NO
 Set NDW_LAST_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO

Enterprise Systems Engineering 52 Final (04/11/2002)

 Update NDW_REFRESH_RUN_CONTROL
 Set NDW902_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO
 Set NDW902_MAX_VALUE_PROCESSED = TR.TRIAL_ID

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW902_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = last TRIAL_ID read from TRIAL
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = .AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Process completed. Last TRIAL_ID
processed updated”.

 All other fields remain null.
 Commit records to database
 End If last

After specified number of records have been processed, commit.
 After each ND.NDW902_RECORDS_TO_COMMIT records
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW902_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = TR.TRIAL_ID
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 RECORDS_PROCESSED = v.RECORD_COUNT

STEP_DESCR = “NDW-000TBD: Cumulative records committed to
NDW_ACCS_ID_CONTROL table.”.

 All other fields remain null.
 Commit records to database.
 End After Each

If the operator has updated the ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”,
update the NDW_REFRESH_PARAMS, NDW_REFRESH_RUN_CONTROL,
NDW_PROCESS_LOG, commit records and terminate processing.

 Read VALUE from NDW_DEFAULTS
 Where ITEM_NAME = “END_NDW_BATCH_PROCESSES_FLAG”.
 If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Update NDW_REFRESH_PARAMS
 Where ROUTINE_NAME = “NDW902_REFRESH”
 Set LAST_TRANS_NO_PROCESSED = TR.TRIAL_ID
 Set NDW_LAST_REFRESH_ID_NO = NRRC.REFRESH_ID_NO
 Set NDW_LAST_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO

 Update NDW_REFRESH_RUN_CONTROL
 Set NDW902_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO
 Set NDW902_MAX_VALUE_PROCESSED = TR.TRIAL_ID

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW902_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO

Enterprise Systems Engineering 53 Final (04/11/2002)

 DATE_TIME = system date/time
 TRANS_NO = last TRIAL_ID read from TRIAL
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = v.AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Commit records to database.
 Terminate processing.
 End If END_NDW_BATCH_PROCESSES_FLAG
End If TRANS_SOURCE <> “BEGBAL”
End Loop for Matching to NDW_ACCS_ID

Close Routine
Write all NDW_PROCESS_LOG records written for this routine to the .log file and close
file.
If ND.END_NDW_BATCH_PROCESSED_FLAG = “N”
 And NRRC.NDW902_MAX_VALUE_PROCESSED < NRRC.MAX_TRIAL
 Restart the routine at the beginning for an additional pass until all records are processed.
Else
 Terminate processing.

Enterprise Systems Engineering 54 Final (04/11/2002)

4.2 NOAA Data Mart Summary Table Refresh (NDW001_REFRESH.SQL)

The NOAA Data Mart summary tables provide a summarized view of the
detailed TRIAL transactions and Budget Operating Plan data from CFS.
There are two summary tables that will be created based on TRIAL
(NDW_GL_ACCT_SUMMARY and NDW_FIN_CAT_SUMMARY) and an
additional table (NDW_BOP_SUMMARY) to summarize the budget data
based on the BUDGET_CONTROL and BUDGET_DETAIL tables. The
following subsections provide the detailed specifications for populating these
tables. Appendix A – Summary Table Record Formats, provides the database
table format for these tables.

4.2.1 Refresh NDW_GL_ACCT_SUMMARY Table (NDW001_REFRESH.SQL)

The purpose of this table is to provide summarized data by the distinct
Standard General Ledger (SGL) account definition for reporting purposes.
This table reduces the size of the table being queried for summary level
reporting without losing accounting detail.

Routine Name

NDW001_REFRESH.SQL

Input:

This routine will be invoked through a regularly scheduled cron job and uses
the following data as input:

 CAMS Data Warehouse Tables:

 TRIAL (TR)

 CHART (CH)

 NOAA Data Mart Tables:

 NDW_GL_ACCT_SUMMARY (NGAS)

 NDW_REFRESH_PARAMS (NRP)

 NDW_DEFAULTS (ND)

 NDW_REFRESH_RUN_CONTROL (NRRC)

 NDW_ACCS_ID_MAP (NAIM)

Output:

This routine will produce the following return parameters, output files,
database tables, and/or reports:

Enterprise Systems Engineering 55 Final (04/11/2002)

 NOAA Data Mart Tables:

 NDW_GL_ACCT_SUMMARY (NGAS)

 NDW_REFRESH_PARAMS (NRP)

 NDW_REFRESH_RUN_CONTROL (NRRC)

 NDW_PROCESS (NP)

 Reports:

 NDW001_RE999_PASS999.log (if database is available).
 NDW001_yyyymmdd.log (if database is not available).
 Only keep 10 versions of NDW001 log files in the

directory.

Processing Logic:

Begin Routine
Write date/time started to .log file.
Write header information to .log file.

Determine refresh run. There should be only one refresh run active at any time, although
multiple processes may be run in parallel.
Read REFRESH_ID_NO, NDW001_REFRESH_PASS_NO,
CFS_SNAPSHOTS_COMPLETE
 From NDW_REFRESH_RUN_CONTROL (NRRC)
 Where ACTIVE_STATUS = “Y”.

If more than one entry
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW001_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: More than one active
NDW_REFRESH_RUN_CONTROL entry.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

If no entry found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW001_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: No active NDW_REFRESH_RUN_CONTROL
entry found.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Set v.REFRESH_PASS_NO = NDW001_REFRESH_PASS_NO + 1

Enterprise Systems Engineering 56 Final (04/11/2002)

If the snapshots of the CFS tables are not complete, terminate the job.
If NRRC.CFS_SNAPSHOTS_COMPLETE = “N”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW001_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Snapshots of CFS tables not complete.”
 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Determine maximum number of transactions to process and how often to commit.
Read VALUE(s)
 From NDW_DEFAULTS (ND) for the following ITEM_NAMEs
 ITEM_NAME = “NDW001_RECORDS_TO_PROCESS”
 ITEM_NAME = “NDW_GL_ACCT_SUMMARY_PRIVACY”
 ITEM_NAME = “NDW_GL_ACCT_SUMMARY_TABLE_ID”
 ITEM_NAME = “END_NDW_BATCH_PROCESSES_FLAG”
If any entry cannot be found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW001_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Entry not found in NDW_DEFAULTS for
ITEM_NAME: ??”.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

If the operator has updated the ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”,
update NDW_PROCESS_LOG and terminate processing.
If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW001_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.
End If END_NDW_BATCH_PROCESSES_FLAG

Determine beginning transaction number that should be used for selecting records from
TRIAL for this routine.
Read LAST_TRANS_NO_PROCESSED from NDW_REFRESH_PARAMS (NRP)
 Where ROUTINE_NAME = “NDW001_REFRESH”
 And TABLE_NAME = “TRIAL”.
If no entry found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW001_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

Enterprise Systems Engineering 57 Final (04/11/2002)

STEP_DESCR = “NDW-000TBD: No entry found for routine in
NDW_REFRESH_PARAMS table.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Write record to log table.
Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW001_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = NRP.LAST_TRANS_NO_PROCESSED
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 STEP_DESCR = “NDW-000TBD: Routine started with TRIAL_ID > this number.”
 All other fields remain null.

Read TRIAL Records
Process only TRIAL records since the last refresh.
For each record within TRIAL (TR) where
 TRIAL_ID > NRP.LAST_TRANS_NO_PROCESSED and <
 NRP.LAST_TRANS_NO_PROCESSED + ND. NDW001_RECORDS_TO_PROCESS
 And TR.TRANS_SOURCE <> “BEGBAL”
 Match TR.TRIAL_ID to NAIM.TRIAL_ID (to obtain NDW_ACCS_ID)

Group by NDW_ACCS_ID, FUND_CODE_FISCAL_YEAR, GL_END_DATE,
ACCOUNT_NO, and SUB_ACCOUNT_NO

Insert/Update NDW_GL_ACCT_SUMMARY Records
Update NDW_GL_ACCT_SUMMARY table based on grouped TRIAL records
For each grouped record
 Match NAIM.NDW_ACCS_ID to NGAS.NDW_ACCS_ID,
 TR.FUND_CODE_FISCAL_YEAR to NGAS.FUND_CODE_FISCAL_YEAR,
 TR.GL_END_DATE to NGAS.GL_END_DATE,
 TR.ACCOUNT_NO to NGAS.ACCOUNT_NO
 TR.SUB_ACCOUNT_NO to NGAS.SUB_ACCOUNT_NO

Update existing record if found.
If a match is found update NDW_GL_ACCT_SUMMARY as follows:
 Add TR.DEBIT_AMOUNT to NGAS.DEBIT_AMOUNT
 Add TR.CREDIT_AMOUNT to NGAS.CREDIT_AMOUNT

Compute Net Amount based on BALANCE_FLAG for the SGL account.
 If NGAS.BALANCE_FLAG = “DR”

Compute v.NET_AMOUNT = TR.DEBIT_AMOUNT –
TR.CREDIT_AMOUNT

 If NGAS.BALANCE_FLAG = “CR”
Compute v.NET_AMOUNT = TR.CREDIT_AMOUNT –
TR.DEBIT_AMOUNT

 If NGAS.BALANCE_FLAG = “DC”
 Do not update this field (should be 0).
 Add v.NET_AMOUNT to NGAS.NET_AMOUNT

Add STAT_UNIT_QTY if the transaction is a labor record.
 If TR.ACCOUNT_NO between 4900 and 4999

Enterprise Systems Engineering 58 Final (04/11/2002)

 And TR.SUBSYSTEM_CODE = “GJ”
 And TR.TRANS_SOURCE = “GJ”
 And substr(TR.TRANS_DESCR,13,6) in (“NFC002”, “NFC005”, “NFC004”)
 Add TR.STAT_UNIT_QTY to NGAS.LABOR_HOURS

Update LAST_MOD fields.
 Set NGAS.NDW_LAST_MOD_DATE to system date
 Set NGAS.NDW_LAST_MOD_USER_NAME to user’s name
 Set NGAS.NDW_LAST_MOD_DEVICE_NAME to device

Add a new record if not found.
Else (no match found)

Set NDW_GL_ACCT_SUMMARY fields to TRIAL fields as reflected in Appendix
A – Summary Table Record Formats.
Set TRANS_TABLE_INDICATOR to
ND.TABLE_ID_NDW_GL_ACCT_SUMMARY.

 Set NDW_TRANS_NO to next sequential number from NDW_MAXSEQNOS
Where TABLE_NAME = “NDW_GL_ACCT_SUMMARY”.

 Set NDW_ACCS_ID to NAIM.NDW_ACCS_ID
 Set MONTH_CLOSED_FLAG = “N”.
 Set PRIVACY_ACT_APPLIES to ND.PRIVACY_NDW_GL_ACCT_SUMMARY.

Derive FISCAL_MONTH field from GL_END_DATE
 If TR.GL_END_DATE month > 9
 Set NGAS.FISCAL_MONTH = TR.GL_END_DATE month - 9
 Else
 Set NGAS.FISCAL_MONTH = TR.GL_END_DATE month + 3

Set BALANCE_FLAG based on ACCOUNT_NO/SUB_ACCOUNT_NO in
CHART

 Set NGAS.BALANCE_FLAG to CH.BALANCE_FLAG from CHART (CH)
 Where CH.ACCOUNT_NO = TR.ACCOUNT_NO
 And CH.SUB_ACCOUNT_NO = TR.SUB_ACCOUNT_NO

Compute Net Amount based on BALANCE_FLAG for the SGL account.
 If NGAS.BALANCE_FLAG = “DR”

Set NGAS.NET_AMOUNT = TR.DEBIT_AMOUNT –
TR.CREDIT_AMOUNT

 If NGAS.BALANCE_FLAG = “CR”
Set NGAS.NET_AMOUNT = TR.CREDIT_AMOUNT –
TR.DEBIT_AMOUNT

 If NGAS.BALANCE_FLAG = “DC”
 Set NGAS.NET_AMOUNT to 0.

Add STAT_UNIT_QTY if the transaction is a labor record.
 If TR.ACCOUNT_NO between 4900 and 4999
 And TR.SUBSYSTEM_CODE = “GJ”
 And TR.TRANS_SOURCE = “GJ”
 And substr(TR.TRANS_DESCR,13,6) in (“NFC002”,”NFC005”,”NFC004”)
 Set TR.STAT_UNIT_QTY to NGAS.LABOR_HOURS

Populate both CREATION and LAST_MOD fields.
 Set NDW_CREATION_DATE to system date
 Set NDW_CREATION_USER_NAME to user’s name

Enterprise Systems Engineering 59 Final (04/11/2002)

 Set NDW_CREATION_DEVICE_NAME to device

 Set NDW_LAST_MOD_DATE to system date
 Set NDW_LAST_MOD_USER_NAME to user’s name
 Set NDW_LAST_MOD_DEVICE_NAME to device

 Set all Line Office extract fields to null

Update control counts.

 Add 1 to v.RECORD_COUNT.
Add (TR.DEBIT_AMOUNT – TR.CREDIT_AMOUNT) to v.AMOUNT_PROCESSED.

When all records have been processed, update the NDW_REFRESH_PARAMS,
NDW_REFRESH_RUN_CONTROL, NDW_PROCESS_LOG and commit records.

 If last TRIAL record
 Update NDW_REFRESH_PARAMS
 Where ROUTINE_NAME = “NDW001_REFRESH”
 Set LAST_TRANS_NO_PROCESSED = TR.TRIAL_ID
 Set NDW_LAST_REFRESH_ID_NO = NRRC.REFRESH_ID_NO
 Set NDW_LAST_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO

 Update NDW_REFRESH_RUN_CONTROL
 Set NDW001_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO
 Set NDW001_MAX_VALUE_PROCESSED = TR.TRIAL_ID

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW001_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = last TRIAL_ID read from TRIAL
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = .AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Process completed. Last TRIAL_ID
processed updated”.

 All other fields remain null.
 Commit records to database
 End If last

After specified number of records have been processed, commit.
 After each ND.NDW001_RECORDS_TO_COMMIT records
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW001_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = TR.TRIAL_ID
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = v.AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Cumulative records committed to
NDW_GL_ACCT_SUMMARY table.”.

 All other fields remain null.
 Commit records to database.

Enterprise Systems Engineering 60 Final (04/11/2002)

 End After Each

If the operator has updated the ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”,
update the NDW_REFRESH_PARAMS, NDW_REFRESH_RUN_CONTROL,
NDW_PROCESS_LOG, commit records and terminate processing.

 Read VALUE from NDW_DEFAULTS
 Where ITEM_NAME = “END_NDW_BATCH_PROCESSES_FLAG”.
 If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Update NDW_REFRESH_PARAMS
 Where ROUTINE_NAME = “NDW001_REFRESH”
 Set LAST_TRANS_NO_PROCESSED = TR.TRIAL_ID
 Set NDW_LAST_REFRESH_ID_NO = NRRC.REFRESH_ID_NO
 Set NDW_LAST_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO

 Update NDW_REFRESH_RUN_CONTROL
 Set NDW001_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO
 Set NDW001_MAX_VALUE_PROCESSED = TR.TRIAL_ID

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW001_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = last TRIAL_ID read from TRIAL
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = v.AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Commit records to database.
 Terminate processing.
 End If END_NDW_BATCH_PROCESSES_FLAG
End If TRANS_SOURCE <> “BEGBAL”
End Loop for Matching to NDW_GL_ACCT_SUMMARY

Close Routine
Write all NDW_PROCESS_LOG records written for this routine to the .log file and close
file.
If ND.END_NDW_BATCH_PROCESSED_FLAG = “N”
 And NRRC.NDW001_MAX_VALUE_PROCESSED < NRRC.MAX_TRIAL
 Restart the routine at the beginning for an additional pass until all records are processed.
Else
 Terminate processing.

Enterprise Systems Engineering 61 Final (04/11/2002)

4.2.2 Refresh NDW_FIN_CAT_SUMMARY Table (NDW002_REFRESH.SQL)

The purpose of this table is to provide summarized data by NOAA-oriented
financial categories for Line/Field Office extract and reporting purposes. This
table further reduces the volume of data being queried as well as providing
user-oriented definitions.

Routine Name

NDW002_REFRESH.SQL

Input:

This routine will be invoked through a regularly scheduled cron job and uses
the following data as input:

 CAMS Data Warehouse Tables:

 TRIAL (TR)

 NOAA Data Mart Tables:

 NDW_FIN_CAT_SUMMARY (NFCS)

 NDW_REFRESH_PARAMS (NRP)

 NDW_DEFAULTS (ND)

 NDW_REFRESH_RUN_CONTROL (NRRC)

 NDW_FIN_CAT_DEF_DETAIL (NFCDD)

 NDW_ACCS_ID_MAP (NAIM)

Output:

This routine will produce the following return parameters, output files,
database tables, and/or reports:

 NOAA Data Mart Tables:

 NDW_FIN_CAT_SUMMARY (NFCS)

 NDW_REFRESH_PARAMS (NRP)

 NDW_REFRESH_RUN_CONTROL (NRRC)

 NDW_PROCESS (NP)

 Reports:

Enterprise Systems Engineering 62 Final (04/11/2002)

 NDW002_RE999_PASS999.log (if database is available).
 NDW002_yyyymmdd.log (if database is not available).
 Only keep 10 versions of NDW002 log files in the

directory.

Processing Logic:

Begin Routine
Write date/time started to .log file.
Write header information to .log file.

Determine refresh run. There should be only one refresh run active at any time, although
multiple processes may be run in parallel.
Read REFRESH_ID_NO, NDW002_REFRESH_PASS_NO,
CFS_SNAPSHOTS_COMPLETE
 From NDW_REFRESH_RUN_CONTROL (NRRC)
 Where ACTIVE_STATUS = “Y”.

If more than one entry
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW002_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: More than one active
NDW_REFRESH_RUN_CONTROL entry.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

If no entry found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW002_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: No active NDW_REFRESH_RUN_CONTROL
entry found.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Set v.REFRESH_PASS_NO = NDW002_REFRESH_PASS_NO + 1

If the snapshots of the CFS tables are not complete, terminate the job.
If NRRC.CFS_SNAPSHOTS_COMPLETE = “N”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW002_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Snapshots of CFS tables not complete.”
 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Determine maximum number of transactions to process and how often to commit.
Read VALUE(s)

Enterprise Systems Engineering 63 Final (04/11/2002)

 From NDW_DEFAULTS (ND) for the following ITEM_NAMEs
 ITEM_NAME = “NDW002_RECORDS_TO_PROCESS”
 ITEM_NAME = “NDW_FIN_CAT_SUMMARY_PRIVACY”
 ITEM_NAME = “NDW_FIN_CAT_SUMMARY_TABLE_ID”
 ITEM_NAME = “END_NDW_BATCH_PROCESSES_FLAG”
If any entry cannot be found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW002_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Entry not found in NDW_DEFAULTS for
ITEM_NAME: ??”.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

If the operator has updated the ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”,
update NDW_PROCESS_LOG and terminate processing.
If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW002_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Update NDW_REFRESH_RUN_CONTROL where

Set REFRESH_STOPPED_BY_OPERATOR = “Y”
 Terminate processing.
End If END_NDW_BATCH_PROCESSES_FLAG

Determine beginning transaction number that should be used for selecting records from
TRIAL for this routine.
Read LAST_TRANS_NO_PROCESSED from NDW_REFRESH_PARAMS (NRP)
 Where ROUTINE_NAME = “NDW002_REFRESH”
 And TABLE_NAME = “TRIAL”.
If no entry found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW002_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: No entry found for routine in
NDW_REFRESH_PARAMS table.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Write record to log table.
Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW002_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = NRP.LAST_TRANS_NO_PROCESSED

Enterprise Systems Engineering 64 Final (04/11/2002)

 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 STEP_DESCR = “NDW-000TBD: Routine started with TRIAL_ID > this number.”
 All other fields remain null.

Read TRIAL Records
Process only TRIAL records since the last refresh.
For each record within TRIAL (TR) where
 TRIAL_ID > NRP.LAST_TRANS_NO_PROCESSED and <
 NRP.LAST_TRANS_NO_PROCESSED + ND. NDW002_RECORDS_TO_PROCESS
 And TR.TRANS_SOURCE <> “BEGBAL”
 Match TR.TRIAL_ID to NAIM.TRIAL_ID (to obtain NDW_ACCS_ID)

Group by NDW_ACCS_ID, FUND_CODE_FISCAL_YEAR, GL_END_DATE,
ACCOUNT_NO, and SUB_ACCOUNT_NO

Insert/Update NDW_FIN_CAT_SUMMARY Records

For each grouped TRIAL (TR) record:

Determine Financial Category(s) in which this TRIAL record applies.
Read FIN_CAT_NO, FIN_CAT_ID, FIN_CAT_GROUP_FLAG, BALANCE_FLAG
 from NDW_FIN_CAT_DET_DETAIL (NFCDD) records
 Where TR.ACCOUNT_NO = NFCDD.ACCOUNT_NO
 And TR.SUB_ACCOUNT_NO = NFCDD.SUB_ACCOUNT_NO
 And NFCDD.ACTIVE_STATUS = “Y”
 And GL_END_DATE is between NFCDD.START_DATE and NFCDD.END_DATE

If grouped TRIAL record does not fall within any of the Financial Category definitions, do
not process. Proceed to next grouped record.

Update NDW_FIN_CAT_SUMMARY table

Match NAIM.NDW_ACCS_ID to NFCS.NDW_ACCS_ID
And TR.FUND_CODE_FISCAL_YEAR to NFCS.FUND_CODE_FISCAL_YEAR
And TR.GL_END_DATE to NFCS.GL_END_DATE

Update existing record if found.
If a match is found:
 For each NFCDD.FIN_CAT_NO found
 Where TR.ACCOUNT_NO = NFCDD.ACCOUNT_NO
 And TR.SUB_ACCOUNT_NO = NFCDD.SUB_ACCOUNT_NO

Compute Net Amount based on BALANCE_FLAG for the SGL account.
If NFCDD.BALANCE_FLAG = “DR”

Compute v.NET_AMOUNT = TR.DEBIT_AMOUNT –
TR.CREDIT_AMOUNT

Else if NFCDD.BALANCE_FLAG = “CR”
Compute v.NET_AMOUNT = TR.CREDIT_AMOUNT –
TR.DEBIT_AMOUNT

 Else set v.NET_AMOUNT = 0

Add v.NET_AMOUNT to NFCS.FIN_CAT_”FIN_CAT_NO”_AMOUNT

Add STAT_UNIT_QTY if the transaction is a labor record.

 If TR.ACCOUNT_NO between 4900 and 4999
 And TR.SUBSYSTEM_CODE = “GJ”

Enterprise Systems Engineering 65 Final (04/11/2002)

 And TR.TRANS_SOURCE = “GJ”
And substr (TR.TRANS_DESCR,13,6) in (“NFC002”, “NFC005”,
“NFC004”)

Add TR.STAT_UNIT_QTY to
NFCS.FIN_CAT_”FIN_CAT_NO”_LABOR_HOURS

 End For Each FIN_CAT_NO

Update LAST_MOD fields.
 Set NFCS.NDW_LAST_MOD_DATE to system date
 Set NFCS.NDW_LAST_MOD_USER_NAME to user’s name
 Set NFCS.NDW_LAST_MOD_DEVICE_NAME to device

Add a new record if not found.
Else (no match found)

Set NDW_FIN_CAT_SUMMARY fields to TRIAL fields as reflected in Appendix
A – Summary Table Record Formats.

Set TRANS_TABLE_INDICATOR to
ND.TABLE_ID_NDW_FIN_CAT_SUMMARY.

Set NDW_TRANS_NO to next sequential number from NDW_MAXSEQNOS
where TABLE_NAME = “NDW_FIN_CAT_SUMMARY”.

 Set MONTH_CLOSED_FLAG = “N”.

 Set PRIVACY_ACT_APPLIES to ND.PRIVACY_NDW_FIN_CAT_SUMMARY.

Derive FISCAL_MONTH field from GL_END_DATE
 If TR.GL_END_DATE month > 9
 Set NFCS.FISCAL_MONTH = TR.GL_END_DATE month - 9
 Else
 Set NFCS.FISCAL_MONTH = TR.GL_END_DATE month + 3

 For each NFCDD.FIN_CAT_NO found
 Where TR.ACCOUNT_NO = NFCDD.ACCOUNT_NO
 And TR.SUB_ACCOUNT_NO = NFCDD.SUB_ACCOUNT_NO

Compute Net Amount based on BALANCE_FLAG for the SGL account.
If NFCDD.BALANCE_FLAG = “DR”

Compute v.NET_AMOUNT = TR.DEBIT_AMOUNT –
TR.CREDIT_AMOUNT

Else if NFCDD.BALANCE_FLAG = “CR”
Compute v.NET_AMOUNT = TR.CREDIT_AMOUNT –
TR.DEBIT_AMOUNT

 Else Set v.NET_AMOUNT = 0

 Set NFCS.FIN_CAT_”FIN_CAT_NO”_AMOUNT to v.NET_AMOUNT

Add STAT_UNIT_QTY if the transaction is a labor record.
 If TR.ACCOUNT_NO between 4900 and 4999
 And TR.SUBSYSTEM_CODE = “GJ”
 And TR.TRANS_SOURCE = “GJ”

And substr (TR.TRANS_DESCR,13,6) in (“NFC002”, “NFC005”,
“NFC004”)

Enterprise Systems Engineering 66 Final (04/11/2002)

Set NFCS.FIN_CAT_”FIN_CAT_NO”_LABOR_HOURS to
TR.STAT_UNIT_QTY

 End For Each FIN_CAT_NO

Populate both CREATION and LAST_MOD fields.
 Set NDW_CREATION_DATE to system date
 Set NDW_CREATION_USER_NAME to user’s name
 Set NDW_CREATION_DEVICE_NAME to device

 Set NDW_LAST_MOD_DATE to system date
 Set NDW_LAST_MOD_USER_NAME to user’s name
 Set NDW_LAST_MOD_DEVICE_NAME to device

 Set all Line Office extract fields to null

Update control counts.

 Add 1 to v.RECORD_COUNT.
Add (TR.DEBIT_AMOUNT – TR.CREDIT_AMOUNT) to v.AMOUNT_PROCESSED.

When all records have been processed, update the NDW_REFRESH_PARAMS,
NDW_REFRESH_RUN_CONTROL, NDW_PROCESS_LOG and commit records.

 If last TRIAL record
 Update NDW_REFRESH_PARAMS
 Where ROUTINE_NAME = “NDW002_REFRESH”
 Set LAST_TRANS_NO_PROCESSED = TR.TRIAL_ID
 Set NDW_LAST_REFRESH_ID_NO = NRRC.REFRESH_ID_NO
 Set NDW_LAST_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO

 Update NDW_REFRESH_RUN_CONTROL
 Set NDW002_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO
 Set NDW002_MAX_VALUE_PROCESSED = TR.TRIAL_ID

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW002_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = last TRIAL_ID read from TRIAL
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = .AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Process completed. Last TRIAL_ID
processed updated”.

 All other fields remain null.
 Commit records to database
 End If last

After specified number of records have been processed, commit.

 After each ND.NDW002_RECORDS_TO_COMMIT records
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW002_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = TR.TRIAL_ID

Enterprise Systems Engineering 67 Final (04/11/2002)

 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = v.AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Cumulative records committed to
NDW_FIN_CAT_SUMMARY table.”.

 All other fields remain null.
 Commit records to database.
 End After Each

If the operator has updated the ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”,
update the NDW_REFRESH_PARAMS, NDW_REFRESH_RUN_CONTROL,
NDW_PROCESS_LOG, commit records and terminate processing.

 Read VALUE from NDW_DEFAULTS
 Where ITEM_NAME = “END_NDW_BATCH_PROCESSES_FLAG”.
 If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Update NDW_REFRESH_PARAMS
 Where ROUTINE_NAME = “NDW002_REFRESH”
 Set LAST_TRANS_NO_PROCESSED = TR.TRIAL_ID
 Set NDW_LAST_REFRESH_ID_NO = NRRC.REFRESH_ID_NO
 Set NDW_LAST_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO

 Update NDW_REFRESH_RUN_CONTROL
 Set NDW002_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO
 Set NDW002_MAX_VALUE_PROCESSED = TR.TRIAL_ID

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW002_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = last TRIAL_ID read from TRIAL
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = v.AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Commit records to database.
 Terminate processing.
 End If END_NDW_BATCH_PROCESSES_FLAG
End for each grouped TRIAL record
End Loop for Matching to NDW_FIN_CAT_SUMMARY

Close Routine
Write all NDW_PROCESS_LOG records written for this routine to the .log file and close
file.
If ND.END_NDW_BATCH_PROCESSED_FLAG = “N”
 And NRRC.NDW002_MAX_VALUE_PROCESSED < NRRC.MAX_TRIAL
 Restart the routine at the beginning for an additional pass until all records are processed.
Else
 Terminate processing.

Enterprise Systems Engineering 68 Final (04/11/2002)

4.2.3 Refresh NDW_BOP_SUMMARY Table (NDW003_REFRESH.SQL)

The purpose of this table is to provide summarized Budget Operating Plan
data for Line/Field Office extract and reporting purposes.

Routine Name

NDW003_REFRESH.SQL

Input:

This routine will be invoked through a regularly scheduled cron job and uses
the following data as input:

 CAMS Data Warehouse Tables:

 BUDGET_CONTROL (BC)

 BUDGET_DETAIL (BD)

 NOAA Data Mart Tables:

 NDW_BOP_SUMMARY (NBS)

 NDW_REFRESH_PARAMS (NRP)

 NDW_DEFAULTS (ND)

 NDW_REFRESH_RUN_CONTROL (NRRC)

Output:

This routine will produce the following return parameters, output files,
database tables, and/or reports:

 NOAA Data Mart Tables:

 NDW_BOP_SUMMARY (NBS)

 NDW_REFRESH_PARAMS (NRP)

 NDW_REFRESH_RUN_CONTROL (NRRC)

 NDW_PROCESS (NP)

 Reports:

 NDW003_RE999_PASS999.log (if database is available).
 NDW003_yyyymmdd.log (if database is not available).
 Only keep 10 versions of NDW003 log files in the

directory.

Enterprise Systems Engineering 69 Final (04/11/2002)

Processing Logic:

Begin Routine
Write date/time started to .log file.
Write header information to .log file.

Determine refresh run. There should be only one refresh run active at any time, although
multiple processes may be run in parallel.
Read REFRESH_ID_NO, NDW003_REFRESH_PASS_NO,
CFS_SNAPSHOTS_COMPLETE
 From NDW_REFRESH_RUN_CONTROL (NRRC)
 Where ACTIVE_STATUS = “Y”.

If more than one entry
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW003_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: More than one active
NDW_REFRESH_RUN_CONTROL entry.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

If no entry found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW003_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: No active NDW_REFRESH_RUN_CONTROL
entry found.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Set v.REFRESH_PASS_NO = NDW003_REFRESH_PASS_NO + 1

If the snapshots of the CFS tables are not complete, terminate the job.
If NRRC.CFS_SNAPSHOTS_COMPLETE = “N”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW003_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Snapshots of CFS tables not complete.”
 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Determine maximum number of transactions to process and how often to commit.
Read VALUE(s)
 From NDW_DEFAULTS (ND) for the following ITEM_NAMEs
 ITEM_NAME = “NDW003_RECORDS_TO_COMMIT”
 ITEM_NAME = “NDW_BOP_SUMMARY_PRIVACY”
 ITEM_NAME = “NDW_BOP_SUMMARY_TABLE_ID”

Enterprise Systems Engineering 70 Final (04/11/2002)

 ITEM_NAME = “END_NDW_BATCH_PROCESSES_FLAG”
If any entry cannot be found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW003_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Entry not found in NDW_DEFAULTS for
ITEM_NAME: ??”.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

If the operator has updated the ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”,
update NDW_PROCESS_LOG and terminate processing.
If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW003_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.
End END_NDW_BATCH_PROCESSES_FLAG

Determine last modification date and trans_no fields that should be used for selecting
records from BUDGET_CONTROL and BUDGET_DETAIL for this routine.
Read LAST_TRANS_NO_PROCESSED, BEGIN_MOD_DATE
 From NDW_REFRESH_PARAMS (NRP)
 Where ROUTINE_NAME = “NDW003_REFRESH”
 And TABLE_NAME = “BUDGET_CONTROL”.
If no entry found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW003_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: No entry found for routine in
NDW_REFRESH_PARAMS table.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Write record to log table.
Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW003_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = NRP.LAST_TRANS_NO_PROCESSSED
 MODIFICATION_DATE = NRP.BEGIN_MOD_DATE
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME

STEP_DESCR = “NDW-000TBD: Routine started with key fields > this date and
number.”

Enterprise Systems Engineering 71 Final (04/11/2002)

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Read BUDGET_CONTROL & BUDGET_DETAIL Records
Process only BUDGET_CONTROL/DETAIL records since the last refresh.

Note that because budget records can be approved out of sequence and there is no unique
identifier for the BUDGET_DETAIL record, there is no RECORDS_TO_PROCESS field
associated with these records. All newly approved BUDGET_CONTROL and
BUDGET_DETAIL records are selected for processing.

Read BUDGET_CONTROL & BUDGET_DETAIL records
 Where BC.APPROVED_FLAG = “Y”

And BC.MODIFICATION_DATE ||1 BC.TRANS_NO > NRP.BEGIN_MOD_DATE ||
NRP.LAST_TRANS_NO_PROCESSED

Order by BC.MODIFICATION_DATE, BC.TRANS_NO

Insert/Update NDW_BOP_SUMMARY Records
Update NDW_BOP_SUMMARY table

Match:
 BC.FISCAL_YEAR to NBS.FISCAL_YEAR
 BD.BUDGET_MONTH to NBS.FISCAL_MONTH
 BC.FUND_CODE to NBS.FUND_CODE
 BC.BUREAU_CODE to NBS.BUREAU_CODE
 BC.ORG1_CODE to NBS.ORG1_CODE
 BC.ORG2_CODE to NBS.ORG2_CODE
 BC.ORG3_CODE to NBS.ORG3_CODE
 BC.ORG4_CODE to NBS.ORG4_CODE
 BC.ORG5_CODE to NBS.ORG5_CODE
 BC.ORG6_CODE to NBS.ORG6_CODE
 BC.ORG7_CODE to NBS.ORG7_CODE
 BC.PROGRAM1_CODE to NBS.PROGRAM1_CODE
 BC.PROGRAM2_CODE to NBS.PROGRAM2_CODE
 BC.PROGRAM3_CODE to NBS.PROGRAM3_CODE
 BC.PROGRAM4_CODE to NBS.PROGRAM4_CODE
 BC.PROJECT_CODE to NBS.PROJECT_CODE
 BC.TASK_CODE to NBS.TASK_CODE
 BD.OBJECT1_CODE to NBS_OBJECT1_CODE
 BD.OBJECT2_CODE to NBS_OBJECT2_CODE
 BD.OBJECT3_CODE to NBS_OBJECT3_CODE
 BD.OBJECT4_CODE to NBS_OBJECT4_CODE

Update existing record if found.
If a match is found update NDW_BOP_SUMMARY as follows:
 Add BD.AMOUNT to NBS.BUDGET_AMOUNT
 Add BD.STAT_UNIT_QTY to NBS.LABOR_FTE

Update LAST_MOD fields.
 Set NBS.NDW_LAST_MOD_DATE to system date

1The symbol || indicates that the fields should be concatenated (strung together).

Enterprise Systems Engineering 72 Final (04/11/2002)

 Set NBS.NDW_LAST_MOD_USER_NAME to user’s name
 Set NBS.NDW_LAST_MOD_DEVICE_NAME to device

Add a new record if not found.
Else (no match found)

Set NDW_BOP_SUMMARY fields to BUDGET_CONTROL/BUDGET_DETAIL
fields as reflected in Appendix A – Summary Table Record Formats.

Set TRANS_TABLE_INDICATOR to ND.TABLE_ID_NDW_BOP_SUMMARY.

 Set NDW_TRANS_NO to next sequential number from NDW_MAXSEQNOS
 Where TABLE_NAME = “NDW_BOP_SUMMARY”

 Set NBS.BUDGET_AMOUNT to BD.AMOUNT
 Set NBS.LABOR_FTE to BD. STAT_UNIT_QTY
 Set MONTH_CLOSED_FLAG = “N”.
 Set PRIVACY_ACT_APPLIES to ND.PRIVACY_NDW_BOP_SUMMARY.

Populate both CREATION and LAST_MOD fields.
 Set NDW_CREATION_DATE to system date
 Set NDW_CREATION_USER_NAME to user’s name
 Set NDW_CREATION_DEVICE_NAME to device

 Set NDW_LAST_MOD_DATE to system date
 Set NDW_LAST_MOD_USER_NAME to user’s name
 Set NDW_LAST_MOD_DEVICE_NAME to device

 Set all Line Office extract fields to null

For Updates or Inserts:
Update control counts.

 Add 1 to v.RECORD_COUNT.
Add BD.AMOUNT to v.AMOUNT_PROCESSED.

When all records have been processed, update the NDW_REFRESH_PARAMS,
NDW_REFRESH_RUN_CONTROL, NDW_PROCESS_LOG and commit records.

 If last BUDGET_DETAIL record
 Update NDW_REFRESH_PARAMS
 Where ROUTINE_NAME = “NDW003_REFRESH”
 Set LAST_TRANS_NO_PROCESSED = BC.TRANS_NO
 Set BEGIN_MOD_DATE = BC.MODIFICATION_DATE
 Set NDW_LAST_REFRESH_ID_NO = NRRC.REFRESH_ID_NO
 Set NDW_LAST_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO

 Update NDW_REFRESH_RUN_CONTROL
 Set NDW003_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO

Set NDW003_MAX_VALUE_PROCESSED = BC.TRANS_NO
Set NDW003_LAST_MOD_DATE = BC.MODIFICATION_DATE

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW003_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = BC.TRANS_NO

MODIFICATION_DATE = BC.MODIFICATION_DATE
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME

Enterprise Systems Engineering 73 Final (04/11/2002)

 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = .AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Process completed. Last approved
BUDGET_CONTROL record with this key processed”.

 All other fields remain null.
 Commit records to database
 End If last

After specified number of records has been processed, commit.
 After each ND.NDW003_RECORDS_TO_COMMIT records

Check to see if the next BUDGET_DETAIL record has the same TRANS_NO as the
last one processed.

Because the BUDGET_DETAIL record does not have a unique key, the
BUDGET_DETAIL records must be processed until the BUDGET_CONTROL
TRANS_NO key changes.

If so, continue processing the records until the next record’s TRANS_NO changes or
no next record.

Else

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW003_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

 TRANS_NO = BC.TRANS_NO
 MODIFICATION_DATE = BC.MODIFICATION_DATE
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME

 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = v.AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Cumulative records committed to
NDW_BOP_SUMMARY table.”.

 All other fields remain null.
 Commit records to database.
 End After Each

If the operator has updated the ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”,
update the NDW_REFRESH_PARAMS, NDW_REFRESH_RUN_CONTROL,
NDW_PROCESS_LOG, commit records and terminate processing.

 Read VALUE from NDW_DEFAULTS
 Where ITEM_NAME = “END_NDW_BATCH_PROCESSES_FLAG”.
 If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Update NDW_REFRESH_PARAMS
 Where ROUTINE_NAME = “NDW003_REFRESH”
 Set LAST_TRANS_NO_PROCESSED = BC.TRANS_NO
 Set BEGIN_MOD_DATE = BC.MODIFICATION_DATE
 Set NDW_LAST_REFRESH_ID_NO = NRRC.REFRESH_ID_NO
 Set NDW_LAST_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO

 Update NDW_REFRESH_RUN_CONTROL
 Set NDW003_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO

Enterprise Systems Engineering 74 Final (04/11/2002)

Set NDW003_MAX_VALUE_PROCESSED = BC.TRANS_NO
Set NDW003_LAST_MOD_DATE = BC.MODIFICATION_DATE

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW003_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = BC.TRANS_NO

MODIFICATION_DATE = BC.MODIFICATION_DATE
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = v.AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Commit records to database.
 Terminate processing.

 End If END_NDW_BATCH_PROCESSES_FLAG
End Loop for Matching to NDW_BOP_SUMMARY

Close Routine
Write all NDW_PROCESS_LOG records written for this routine to the .log file and close
file.

Terminate processing.

Enterprise Systems Engineering 75 Final (04/11/2002)

4.2.4 Update Summary Tables to Reflect Accounting Period Status

Summary level tables are updated on a nightly basis. The amounts within a
record may be updated multiple times during the monthly accounting period,
until that period is closed. Because the data is not static until the accounting
period is closed, it is useful to know the status of the month in order to better
interpret the data. This routine updates data warehouse summary table
records to indicate that the general ledger accounting period (month) is closed.

Note that this job should not be run until after NDW001_REFRESH.SQL and
NDW002_REFRESH.SQL have completed.

Routine Name

NDW050.SQL

Input:

This routine will be invoked through a regularly scheduled cron job and uses
the following data as input:

 CAMS Data Warehouse Tables:

 APERIOD (A)

 NOAA Data Mart Tables:

 NDW_ACCT_PERIOD_STATUS (NAPS)

 NDW_GL_ACCT_SUMMARY (NGAS)

 NDW_FIN_CAT_SUMMARY (NFCS)

Output:

This routine will produce the following return parameters, output files,
database tables, and/or reports:

 NOAA Data Mart Tables:

 NDW_ACCT_PERIOD_STATUS (NAPS)

 NDW_GL_ACCT_SUMMARY (NGAS)

 NDW_FIN_CAT_SUMMARY (NFCS)

 NDW_PROCESS (NP)

 Reports:

 NDW050_yyyymmdd.log

Enterprise Systems Engineering 76 Final (04/11/2002)

Processing Logic:

Begin Routine
Write date/time started to .log file.
Write header information to .log file.

Determine refresh run. There should be only one refresh run active at any time, although
multiple processes may be run in parallel.

Unlike the refresh routines, the NDW050 routine can be run outside of the normal job
stream if necessary. Therefore, if an active NDW_REFRESH_RUN_CONTROL is not
found, an informational message should be written and the REFRESH_ID_NO and
PASS_NO in the NDW_PROCESS_LOG will be set to 0.

Read REFRESH_ID_NO
 From NDW_REFRESH_RUN_CONTROL (NRRC)
 Where ACTIVE_STATUS = “Y”.

If more than one entry
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW050.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: More than one active
NDW_REFRESH_RUN_CONTROL entry.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

If no entry found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW050.SQL”
 DATE_TIME = system date/time
 REFRESH_ID = 0
 PASS_NO = 0

STEP_DESCR = “NDW-000TBD: No active NDW_REFRESH_RUN_CONTROL
entry found.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Do not terminate processing.
 Set v.REFRESH_ID_NO = 0
 Set v.REFRESH_PASS_NO = 0

Else if a single entry is found
 Set v.REFRESH_ID_NO = NRRC.REFRESH_ID_NO
 Set v.REFRESH_PASS_NO = NRRC.REFRESH_PASS_NO

Determine how often to commit.
Read VALUE(s)
 From NDW_DEFAULTS (ND) for the following ITEM_NAMEs
 ITEM_NAME = “NDW050_RECORDS_TO_COMMIT”
 ITEM_NAME = “END_NDW_BATCH_PROCESSES_FLAG”

If any entry cannot be found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW050.SQL”

Enterprise Systems Engineering 77 Final (04/11/2002)

 DATE_TIME = system date/time
 REFRESH_ID = v.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO

STEP_DESCR = “NDW-000TBD: Entry not found in NDW_DEFAULTS for
ITEM_NAME: ??”.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

If the operator has updated the ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”,
update NDW_PROCESS_LOG and terminate processing.
If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW050.SQL”
 DATE_TIME = system date/time
 REFRESH_ID = v.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Update NDW_ ACCT_PERIOD_STATUS Table

Determine last modification date that should be used for selecting records from APERIOD
for this routine.
Read BEGIN_MOD_DATE from NDW_REFRESH_PARAMS (NRP)
 Where ROUTINE_NAME = “NDW050”
 And TABLE_NAME = “APERIOD”.
If no entry found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW050.SQL”
 DATE_TIME = system date/time
 REFRESH_ID = v.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO

STEP_DESCR = “NDW-000TBD: No entry found for routine in
NDW_REFRESH_PARAMS table.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Write record to log table.
Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW050.SQL”
 DATE_TIME = system date/time
 REFRESH_ID = v.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 TABLE_NAME_PROCESSED = “APERIOD”

STEP_DESCR = “NDW-000TBD: Process to update NDW_ACCT_PERIOD_STATUS
table started.”

 All other fields remain null.

Read all APERIOD (A) records
 Where A.MODIFICATION_DATE > NRP.BEGIN_MOD_DATE

Enterprise Systems Engineering 78 Final (04/11/2002)

For each APERIOD record read
 Match A.GL_BEGIN_DATE to NAPS. GL_BEGIN_DATE
 Match A.GL_END_DATE to NAPS.GL_END_DATE

 If a match is found
 Update NDW_ACCT_PERIOD_STATUS record:
 Set NAPS.GL_STATUS to A.GL_STATUS

 Set NDW_LAST_MOD_DATE to system date
 Set NDW_LAST_MOD_USER_NAME to user’s name
 Set NDW_LAST_MOD_DEVICE_NAME to device
 Add 1 to v.RECORD_COUNT

 If a match is not found
 Insert new NDW_ACCT_PERIOD_STATUS:
 Set NAPS.GL_BEGIN_DATE to A.GL_BEGIN_DATE
 Set NAPS.GL_END_DATE to A.GL_END_DATE
 Set NAPS.GL_STATUS to A.GL_STATUS

 Set NDW_LAST_MOD_DATE to system date
 Set NDW_LAST_MOD_USER_NAME to user’s name
 Set NDW_LAST_MOD_DEVICE_NAME to device
 Add 1 to v.RECORD_COUNT

End For Each APERIOD Record

Write record to log table.
When all APERIOD records are processed

 Update NDW_REFRESH_PARAMS (NRP) entry
 Where ROUTINE_NAME = “NDW050”
 And TABLE_NAME = “APERIOD”

Set BEGIN_MOD_DATE to maximum MODIFICATION_DATE from APERIOD
table.

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW050.SQL”
 DATE_TIME = system date/time
 REFRESH_ID = v.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO

MODIFICATION_DATE = maximum MODIFICATION_DATE from APERIOD
table

 RECORDS_PROCESSED = v.RECORD_COUNT
 TABLE_NAME_PROCESSED = “APERIOD”

STEP_DESCR = “NDW-000TBD: Process to update
NDW_ACCT_PERIOD_STATUS table successfully completed.”

 All other fields remain null.

Enterprise Systems Engineering 79 Final (04/11/2002)

Update NDW_GL_ACCT_SUMMARY Records

If the operator has updated the ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”,
update NDW_PROCESS_LOG and terminate processing.

If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW050.SQL”
 DATE_TIME = system date/time
 REFRESH_ID = v.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Write record to log table.
Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW050.SQL”
 DATE_TIME = system date/time
 REFRESH_ID = v.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 TABLE_NAME_PROCESSED = “NDW_GL_ACCT_SUMMARY”
 STEP_DESCR = “NDW-000TBD: Routine to update MONTH_CLOSED_FLAG
started.”
 All other fields remain null.

Process NDW_GL_ACCT_SUMMARY records.
Read NDW_GL_ACCT_SUMMARY records

Where MONTH_CLOSED_FLAG = “N”
And GL_END_DATE = NDW_ACCT_PERIOD_STATUS.GL_END_DATE
And NAPS.GL_STATUS = “C”.

Update NDW_GL_ACCT_SUMMARY table:
 Set NGAS.MONTH_CLOSED_FLAG = “Y”.
 Set NGAS. NDW_LAST_MOD_DATE to system date
 Set NGAS.NDW_LAST_MOD_USER_NAME to user’s name
 Set NGAS.NDW_LAST_MOD_DEVICE_NAME to device

Add 1 to v.RECORD_COUNT

When all records have been processed, update the NDW_PROCESS_LOG and commit
records.

 If last NDW_GL_ACCT_SUMMARY record
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW050.SQL”
 DATE_TIME = system date/time
 REFRESH_ID = v.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 TABLE_NAME_PROCESSED = “NDW_GL_ACCT_SUMMARY”
 RECORDS_PROCESSED = v.RECORD_COUNT

STEP_DESCR = “NDW-000TBD: NDW_GL_ACCT_SUMMARY
MONTH_CLOSED_FLAG update completed.”.

 All other fields remain null.

Enterprise Systems Engineering 80 Final (04/11/2002)

 Commit records to database
 End If last

After specified number of records have been processed, commit.

 After each ND.NDW050_RECORDS_TO_COMMIT records
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW050.SQL”
 DATE_TIME = system date/time
 REFRESH_ID = v.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 TABLE_NAME_PROCESSED = “NDW_GL_ACCT_SUMMARY”
 RECORDS_PROCESSED = v.RECORD_COUNT

STEP_DESCR = “NDW-000TBD: Cumulative records committed to
NDW_GL_ACCT_SUMMARY table.”.

 All other fields remain null.
 Commit records to database.
 End After Each

End Loop for Updating NDW_GL_ACCT_SUMMARY

Update NDW_FIN_CAT_SUMMARY Records

If the operator has updated the ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”,
update NDW_PROCESS_LOG and terminate processing.

If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW050.SQL”
 DATE_TIME = system date/time
 REFRESH_ID = v.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Write record to log table.
Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW050.SQL”
 DATE_TIME = system date/time
 REFRESH_ID = v.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 TABLE_NAME_PROCESSED = “NDW_FIN_CAT_SUMMARY”
 STEP_DESCR = “NDW-000TBD: Routine to update MONTH_CLOSED_FLAG
started.”
 All other fields remain null.

Process NDW_FIN_CAT_SUMMARY records.
Read NDW_FIN_CAT_SUMMARY records

Where MONTH_CLOSED_FLAG = “N”
And GL_END_DATE = NDW_ACCT_PERIOD_STATUS.GL_END_DATE
And NAPS.GL_STATUS = “C”.

Update NDW_FIN_CAT_SUMMARY table:

Enterprise Systems Engineering 81 Final (04/11/2002)

 Set NFCS.MONTH_CLOSED_FLAG = “Y”.
 Set NFCS. NDW_LAST_MOD_DATE to system date
 Set NFCS.NDW_LAST_MOD_USER_NAME to user’s name
 Set NFCS.NDW_LAST_MOD_DEVICE_NAME to device

Add 1 to v.RECORD_COUNT

When all records have been processed, update the NDW_PROCESS_LOG and commit
records.

 If last NDW_FIN_CAT_SUMMARY record
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW050.SQL”
 DATE_TIME = system date/time
 REFRESH_ID = v.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 TABLE_NAME_PROCESSED = “NDW_FIN_CAT_SUMMARY”
 RECORDS_PROCESSED = v.RECORD_COUNT

STEP_DESCR = “NDW-000TBD: NDW_FIN_CAT_SUMMARY
MONTH_CLOSED_FLAG update completed.”.

 All other fields remain null.
 Commit records to database
 End If last

After specified number of records have been processed, commit.

 After each ND.NDW050_RECORDS_TO_COMMIT records
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW050.SQL”
 DATE_TIME = system date/time
 REFRESH_ID = v.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 TABLE_NAME_PROCESSED = “NDW_FIN_CAT_SUMMARY”
 RECORDS_PROCESSED = v.RECORD_COUNT

STEP_DESCR = “NDW-000TBD: Cumulative records committed to
NDW_FIN_CAT_SUMMARY table.”.

 All other fields remain null.
 Commit records to database.
 End After Each

If the operator has updated the ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”,
update NDW_PROCESS_LOG, commit records and terminate processing.

 Read VALUE from NDW_DEFAULTS
 Where ITEM_NAME = “END_NDW_BATCH_PROCESSES_FLAG”.
 If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW050.SQL”
 DATE_TIME = system date/time
 REFRESH_ID = v.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 TABLE_NAME_PROCESSED = “NDW_FIN_CAT_SUMMARY”
 RECORDS_PROCESSED = v.RECORD_COUNT

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Commit records to database.
 Terminate processing.

Enterprise Systems Engineering 82 Final (04/11/2002)

 End If END_NDW_BATCH_PROCESSES_FLAG

End Loop for Updating NDW_FIN_CAT_SUMMARY

Close Routine
Write all NDW_PROCESS_LOG records written for this routine to the .log file and close
file.
Terminate processing.

Enterprise Systems Engineering 83 Final (04/11/2002)

4.3 NOAA Data Mart Transaction Table Refresh

The NOAA Data Mart transaction tables provide detailed transaction data
based on the TRIAL entries, the Budget tables, and detailed labor data from
CFS. The transaction level tables are as follows:

Based on TRIAL entries:

 NDW_COMMIT_TRANS [priority 3]

 NDW_AP_TRANS

Based on BUDGET_CONTROL and BUDGET_DETAIL tables:

 NDW_BOP_DETAIL

Based on GJ_CONTROL, GJ_DETAIL, and GJ_EMPLOYEE:

 NDW_LABOR_DETAIL

The following subsections provide the detailed specifications for populating
these tables. Appendix B – Transaction Table Record Formats, provides the
database table format for these tables.

4.3.1 Refresh Commitment Transaction Tables From Trial (NDW010_REFRESH.SQL)

This is a priority 3 item and will be defined at a later time.

4.3.2 Refresh Accounts Payable Transaction Table From Trial (NDW011_REFRESH.SQL)

The accounts payable transaction table (NDW_AP_TRANS) stores a
transaction record for each accounting event recorded within TRIAL that
affects standard general ledger accounts between 4800 and 4999 (both the
creation and reversal of obligations and expenses).

This routine reads the new TRIAL transactions since the last NOAA Data
Mart refresh was run and creates new transaction records for expenses in the
NDW_AP_TRANS table based on their standard general ledger account
number in TRIAL.

Routine Name

NDW011_REFRESH.SQL

Input:

This routine will be invoked through a regularly scheduled cron job and uses
the following data as input:

 CAMS Data Warehouse Tables:

Enterprise Systems Engineering 84 Final (04/11/2002)

 TRIAL (TR)

 CHART (CH)

 DW_EMPLOYEE_DIM (DED)

 VENDOR_DETAIL (VD)

 CUSTOMER (C)

 CUSTOMER_CONTACT (CC)

 AP_CONTROL (AC)

 AP_DETAIL (AD)

 PO_CONTROL (PC)

 PO_ITEM (PI)

 RT_CONTROL (RT)

 RT_ITEM (RI)

 NOAA Data Mart Tables:

 NDW_AP_TRANS (NAT)

 NDW_REFRESH_PARAMS (NRP)

 NDW_DEFAULTS (ND)

 NDW_REFRESH_RUN_CONTROL (NRRC)

 NDW_ACCS_ID_MAP (NAIM)

 NDW_FIN_CAT_DEF_DETAIL (NFCDD)

 CBS_TRANSACTION_D (CTD)

 CBS_TRANS_ITEM_D (CTID)

 CBS_CARD_HOLDER_L (CCHL)

 CBS_NOTES_D (CND)

Enterprise Systems Engineering 85 Final (04/11/2002)

Output:

This routine will produce the following return parameters, output files,
database tables, and/or reports:

 NOAA Data Mart Tables:

 NDW_AP_TRANS (NAT)

 NDW_REFRESH_PARAMS (NRP)

 NDW_REFRESH_RUN_CONTROL (NRRC)

 NDW_PROCESS (NP)

 Reports:

 NDW011_RE999_PASS999.log (if database is available).
 NDW011_yyyymmdd.log (if database is not available).
 Only keep 10 versions of NDW011 log files in the

directory.

Processing Logic:

Begin Routine
Write date/time started to .log file.
Write header information to .log file.

Determine refresh run. There should be only one refresh run active at any time, although
multiple processes may be run in parallel.
Read REFRESH_ID_NO, NDW011_REFRESH_PASS_NO,
CFS_SNAPSHOTS_COMPLETE
 From NDW_REFRESH_RUN_CONTROL (NRRC)
 Where ACTIVE_STATUS = “Y”.

If more than one entry
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW011_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: More than one active
NDW_REFRESH_RUN_CONTROL entry.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

If no entry found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW011_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: No active NDW_REFRESH_RUN_CONTROL
entry found.”

 All other fields remain null.

Enterprise Systems Engineering 86 Final (04/11/2002)

 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Set v.REFRESH_PASS_NO = NDW011_REFRESH_PASS_NO + 1

If the snapshots of the CFS tables are not complete, terminate the job.
If NRRC.CFS_SNAPSHOTS_COMPLETE = “N”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW011_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Snapshots of CFS tables not complete.”
 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Determine maximum number of transactions to process and how often to commit.
Read VALUE(s)
 From NDW_DEFAULTS (ND) for the following ITEM_NAMEs
 ITEM_NAME = “NDW011_RECORDS_TO_PROCESS”
 ITEM_NAME = “NDW011_RECORDS_TO_COMMIT”
 ITEM_NAME = “NDW_AP_TRANS_PRIVACY”
 ITEM_NAME = “NDW_AP_TRANS_TABLE_ID”
 ITEM_NAME = “END_NDW_BATCH_PROCESSES_FLAG”
If any entry cannot be found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW011_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Entry not found in NDW_DEFAULTS for
ITEM_NAME: ??”.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

If the operator has updated the ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”,
update NDW_PROCESS_LOG and terminate processing.
If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW011_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Terminate processing.
End If END_NDW_BATCH_PROCESSES_FLAG

Determine beginning transaction number that should be used for selecting records from
TRIAL for this routine.
Read LAST_TRANS_NO_PROCESSED from NDW_REFRESH_PARAMS (NRP)
 Where ROUTINE_NAME = “NDW011_REFRESH”
 And TABLE_NAME = “TRIAL”.
If no entry found

Enterprise Systems Engineering 87 Final (04/11/2002)

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW011_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: No entry found for routine in
NDW_REFRESH_PARAMS table.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Write record to log table.
Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW011_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = NRP.LAST_TRANS_NO_PROCESSED
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 STEP_DESCR = “NDW-000TBD: Routine started with TRIAL_ID > this number.”
 All other fields remain null.

Read TRIAL Records
Process only TRIAL records since the last refresh.
For each record within TRIAL (TR) where
 TRIAL_ID > NRP.LAST_TRANS_NO_PROCESSED and <
 NRP.LAST_TRANS_NO_PROCESSED + ND.NDW011_RECORDS_TO_PROCESS

Insert NDW_AP_TRANS Records
Insert NDW_AP_TRANS table based on TRIAL records

Set NDW_AP_TRANS fields to TRIAL fields as reflected in Appendix B – Transaction
Table Record Formats.

 Set MONTH_CLOSED_FLAG = “N”.

 Set PRIVACY_ACT_APPLIES to ND.PRIVACY_NDW_AP_TRANS.

Update NDW Table Indicator and Trans No.
Set TRANS_TABLE_INDICATOR to ND.TABLE_ID_NDW_AP_TRANS.

 Set NDW_TRANS_NO to next sequential number from NDW_MAXSEQNOS

Where TABLE_NAME = “NDW_AP_TRANS”.

Update Financial Category Group Identifier
Set FIN_CAT_GROUP = FINC_CAT_ID from NDW_FIN_CAT_DEF_DETAIL
(NFCDD)
 Where TR.ACCOUNT_NO = NFCDD.ACCOUNT_NO
 And TR.SUB_ACCOUNT_NO = NFCDD.SUB_ACCOUNT_NO
 And NFCDD.FIN_CAT_GROUP_FLAG = “Y”
 And NFCDD.ACTIVE_STATUS = “Y”

And TR.GL_END_DATE between NFCDD.START_DATE and
NFCDD.END_DATE

Update NDW_ACCS_ID

Enterprise Systems Engineering 88 Final (04/11/2002)

 Match TR.TRIAL_ID to NAIM.TRIAL_ID
 Set NDW_ACCS_ID to NAIM.NDW_ACCS_ID
 If no match found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW011_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: WARNING: Unique ACCS ID could not
be found for this TRIAL_ID.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Do not terminate processing.

Update flag to indicate this is a prior year record
 If TR.ACCOUNT_NO = 4880, 4881, 4882, 4980, 4981, 4982
 Set PY_RECORD_FLAG = “Y”
 Else
 Set PY_RECORD_FLAG = “N”

Derive Feeder System – for batch interfaces, this field indicates the source system of
the interface.2

 If TR.SUBSYSTEM_CODE = “AP”
 And TR.TRANS_SOURCE = “AP”

Use AP_CONTROL.CREATED_BY if = “PURCHASE CARD” or “TRAVEL
MANAGER”.

 If TR.SUBSYSTEM_CODE = “APC”
 And TR.TRANS_SOURCE = “APC”

Use APC_ACCOUNT.USER_NAME if = “PURCHASE CARD”

Derive Employee Name
 If TR.EMP_NO is not null
 Read DW_EMPLOYEE_DIM (DED)
 Where DED.EMP_NO = TR.EMP_NO
 If a match is found

Set DAT.EMP_LAST_NAME to DED.LAST_NAME,
Set DAT.EMP_FIRST_NAME to DED.FIRST_NAME
Set DAT.EMP_MIDDLE_NAME to DED.MIDDLE_NAME

 Else
 Set DAT.EMP_LAST_NAME = “NOT FOUND”.

Derive Vendor ID Name
 If TR.VENDOR_NO is not null and TR.VENDOR_ID is not null
 Read VENDOR_DETAIL (VD)
 Where VD.VENDOR_NO = TR.VENDOR_NO
 And VD.VENDOR_ID = TR.VENDOR_ID
 If a match is found

Set DAT.VENDOR_ID_NAME to VD.ADDRESS_NAME
 Else

2 NOTE: This logic may change once the standard interface is implemented for Accounts
Payable as it may introduce a feeder system field name in the source tables.

Enterprise Systems Engineering 89 Final (04/11/2002)

 Set DAT.VENDOR_ID_NAME = “NOT FOUND”.

Derive Customer Name
 If TR.CUSTOMER_NO is not null and TR.CUSTOMER_NO is not 0
 Read CUSTOMER (C)
 Where C.CUSTOMER_NO = TR.CUSTOMER_NO
 If a match is found

Set DAT.CUSTOMER_NAME to C.CUSTOMER_NAME
 Else
 Set DAT.CUSTOMER_NAME = “NOT FOUND”.

Derive Customer Point-of-Contact Name
 If TR.CUSTOMER_NO is not null and TR.CUSTOMER_NO is not 0
 And TR.CONTACT_NO is not null
 Read CUSTOMER_CONTACT (CC)
 Where CC.CUSTOMER_NO = TR.CUSTOMER_NO
 And CC.CONTACT_NO = TR.CONTACT_NO
 If a match is found

Set DAT.CONTACT_NAME to CC.CONTACT_NAME
 Else
 Set DAT.CONTACT_NAME = “NOT FOUND”.

Determine NDW_ACCS_ID
 Read NDW_ACCS_ID_MAP (NAIM)
 Where NAIM.TRIAL_ID = TR.TRIAL_ID

 If no match found

Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW011_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = TR.TRIAL_ID
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME

STEP_DESCR = “NDW-000TBD: WARNING: Unique ACCS ID could not be
found for this TRIAL_ID.”

 All other fields remain null.
Continue processing

 Else
 Set NAT.NDW_ACCS_ID = NAIM.NDW_ACCS_ID

Derive Document Key Fields
Based on TRIAL ACCOUNT_NO, SUBSYSTEM_CODE, TRANS_SOURCE, the
DOCUMENT fields and the ORG_DOCUMENT fields, determine the following (as
applicable):

• Document affected by the transaction (fields with “AFFECTED” prefix)
• Obligation document numbers (fields with “PO” prefix)
• Estimated Accrual document numbers (fields with “EA” prefix)
• Receiving Ticket document numbers (fields with “RT” prefix)
• Vendor Invoice document numbers (fields with “INV” prefix)
• Disbursement document numbers (fields with “DISB” prefix)
• Vendor Invoice Correction document numbers (fields with “INVCOR” prefix)
• Voided document numbers (fields with “VOID” prefix)
• General Ledger document numbers (fields with “GJ” prefix)

Enterprise Systems Engineering 90 Final (04/11/2002)

Derive Commerce Purchase Card System Data
 If TR.ITEM_TYPE = “PCARD”
 And TR.DOCUMENT_TYPE = “VINV”
 Read AP_DETAIL (AD)
 Where AD.TRANS_NO = TR.DOCUMENT_NO
 And AD.ITEM_NO = TR.ITEM_NO
 And AD.LINE_NO = TR.LINE_NO
 Else If
 TR.ORG_ITEM_TYPE = “PCARD”
 And TR.ORG_DOCUMENT_TYPE = “VINV”
 Read AP_DETAIL (AD)
 Where AD.TRANS_NO = TR.ORG_DOCUMENT_NO
 And AD.ITEM_NO = TR.ORG_ITEM_NO
 And AD.LINE_NO = TR.ORG_LINE_NO
 Else (not a CPCS transaction)
 Proceed to next edit.

 If no match found

Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW011_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = TR.TRIAL_ID
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME

STEP_DESCR = “NDW-000TBD: WARNING: Purchase Card information
could not be matched to AP table for this TRIAL_ID.”

 All other fields remain null.
Proceed to next edit

 Else
 Set NAT.CBS_TRANS_SEQ_ID = positions 3 - 12 of AP.ITEM_DESCR
 Set NAT.CBS_ITEM_NO = positions 14 - 16 of AP.ITEM_DESCR
 Set NAT.CBS_LINE_NO = positions 17 - 18 of AP.ITEM_DESCR

If NAT.CBS_TRANS_SEQ_ID, NAT.CBS_ITEM_NO, or NAT.CBS_LINE_NO are
not positive integers

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW011_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = TR.TRIAL_ID
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME

STEP_DESCR = “NDW-000TBD: WARNING: Purchase Card information
could not be derived from AP_DETAIL ITEM_DESCR.”

 All other fields remain null.
 Proceed to next edit

Obtain Commerce Purchase Card System item level Data
Read CBS_TRANS_ITEM_D (CTID)
 Where CTID.TRANS_SEQ_ID = NAT.CBS_TRANS_SEQ_ID
 And CTID.ITEM_NO = NAT.ITEM_NO
 If no match found

Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW011_REFRESH.SQL”

Enterprise Systems Engineering 91 Final (04/11/2002)

 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = TR.TRIAL_ID
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME

STEP_DESCR = “NDW-000TBD: WARNING: Purchase Card
information could not be matched to CBS_TRANS_ITEM_D for this
TRIAL_ID.”

 All other fields remain null.
Set NAT.CBS_MERCHANT_NAME to “NOT FOUND”.
Set NAT.REF_NUM to “NOT FOUND”.
Proceed to next edit

 Else
 Set NAT.CBS_PURCH_DATE to CTID.PURCH_DATE
 Set NAT.CBS_MERCHANT_NAME to CTID.MERCHANT_NAME
 Set NAT.REF_NUM to CTID.REF_NUM

Obtain Commerce Purchase Card System card holder level Data
Read CBS_TRANSACTION_D (CTD) and CBS_CARD_HOLDER_L (CCHL)
 Where CTD.TRANS_SEQ_ID = NAT.CBS_TRANS_SEQ_ID
 And CTD.CARD_NUM = CCHL.CARD_NUMBER
 If no match found

Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW011_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = TR.TRIAL_ID
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME

STEP_DESCR = “NDW-000TBD: WARNING: Purchase Card
information could not be matched to CBS_CARD_HOLDER_L for
this TRIAL_ID.”

 All other fields remain null.
Proceed to next edit

 Else
Set NAT.CBS_CARD_NUMBER to last 6 positions of
CCHL.CARD_NUMBER

 Set NAT.CBS_ASC_CODE to CCHL.L3_PARENT_ORG

Read DW_EMPLOYEE_DIM (DED)
 Where DED.EMP_NO = CCHL.EMP_NO

 If no match is found
Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW011_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = TR.TRIAL_ID
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME

STEP_DESCR = “NDW-000TBD: WARNING: Purchase Cardholder
name could not be matched to DW_EMPLOYEE_DIM for this
TRIAL_ID.”

 All other fields remain null.
Set DAT.CBS_CH_LAST_NAME to “NOT FOUND”.
Proceed to next edit

Enterprise Systems Engineering 92 Final (04/11/2002)

 Else
Set DAT.CBS_CH_LAST_NAME to DED.LAST_NAME.
Set DAT.CBS_CH_FIRST_NAME to DED.FIRST_NAME.
Set DAT.CBS_CH_MIDDL_NAME to DED.MIDDLE_NAME.

Obtain Commerce Purchase Card System item level notes data
Read first CBS_NOTES_D (CND)
 Where CND.TRANS_SEQ_ID = NAT.CBS_TRANS_SEQ_ID
 And CND.ITEM_NO = NAT.CBS_ITEM_NO
 If no match found

Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW011_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = TR.TRIAL_ID
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME

STEP_DESCR = “NDW-000TBD: WARNING: Purchase Card
information could not be matched to CBS_NOTES_D for this
TRIAL_ID.”

 All other fields remain null.
 Set NAT.CBS_NOTES to “NOT FOUND”

Proceed to next edit
 Else

Set NAT.CBS_NOTES to CND.NOTE

Derive FISCAL_MONTH field from GL_END_DATE
 If TR.GL_END_DATE month > 9
 Set NAT.FISCAL_MONTH = TR.GL_END_DATE month - 9
 Else
 Set NAT.FISCAL_MONTH = TR.GL_END_DATE month + 3

Set BALANCE_FLAG based on ACCOUNT_NO/SUB_ACCOUNT_NO in CHART
 Set NAT.BALANCE_FLAG to CH.BALANCE_FLAG from CHART (CH)
 Where CH.ACCOUNT_NO = TR.ACCOUNT_NO
 And CH.SUB_ACCOUNT_NO = TR.SUB_ACCOUNT_NO

Update flag to indicate this is the reversing entry to a prior transaction
If (NAT.BALANCE_FLAG = “DR” and TR.CREDIT_AMOUNT is not 0 or null) or
 (NAT.BALANCE_FLAG = “CR” and TR.DEBIT_AMOUNT is not 0 or null)
 Set REVERSE_ENTRY_FLAG = “Y”
Else
 Set REVERSE_ENTRY_FLAG = “N”

Compute Net Amount based on BALANCE_FLAG for the SGL account.

 If NAT.BALANCE_FLAG = “DR”
Set NAT.NET_AMOUNT = TR.DEBIT_AMOUNT – TR.CREDIT_AMOUNT

 If NAT.BALANCE_FLAG = “CR”
Set NAT.NET_AMOUNT = TR.CREDIT_AMOUNT – TR.DEBIT_AMOUNT

 If NAT.BALANCE_FLAG = “DC”
 Set NAT.NET_AMOUNT to 0.

Summarized Labor Record Processing
Update flag to indicate this is a labor record and add STAT_UNIT_QTY

 If TR.ACCOUNT_NO between 4900 and 4999

Enterprise Systems Engineering 93 Final (04/11/2002)

 And TR.SUBSYSTEM_CODE = “GJ”
 And TR.TRANS_SOURCE = “GJ”
 And substr(TR.TRANS_DESCR,13,6) in (“NFC002”,”NFC005”,”NFC004”)
 Set NAT.LABOR_HOURS to TR.STAT_UNIT_QTY
 Set LABOR_RECORD_FLAG = “Y”
 Else
 Set LABOR_RECORD_FLAG = “N”

Indicate type of labor record type
 If TR.ACCOUNT_NO between 4900 and 4999
 And TR.SUBSYSTEM_CODE = “GJ”
 And TR.TRANS_SOURCE = “GJ”
 If substr(TR.TRANS_DESCR,13,6) = “NFC002”
 Set NAT.LABOR_HOURS to TR.STAT_UNIT_QTY
 Set LABOR_RECORD_FLAG = “Y”
 Set NDW_LABOR_TYPE = “NFC” (actual labor from NFC interface)
 Else if substr(TR.TRANS_DESCR,13,6) = “NFC005”
 Set NAT.LABOR_HOURS to TR.STAT_UNIT_QTY
 Set LABOR_RECORD_FLAG = “Y”
 Set NDW_LABOR_TYPE = “ADJ” (labor adjustment thru NFC005 screen)
 Else if substr(TR.TRANS_DESCR,13,6) = “NFC004”
 Set NAT.LABOR_HOURS to TR.STAT_UNIT_QTY
 Set LABOR_RECORD_FLAG = “Y”
 Set NDW_LABOR_TYPE = “DEF” (labor default applied thru NFC004)
 Else link record to GJ_CONTROL
 If GC.REF like “EST%”
 If GC.DESC like “NFC008%”
 If GC.REVERSE_FLAG = “Y”
 Set NAT.LABOR_HOURS to TR.STAT_UNIT_QTY
 Set LABOR_RECORD_FLAG = “Y”
 Set NDW_LABOR_TYPE = “EST” (month end labor estimate)
 If GC.REVERSE_FLAG = “N”
 Set NAT.LABOR_HOURS to TR.STAT_UNIT_QTY
 Set LABOR_RECORD_FLAG = “Y”

Set NDW_LABOR_TYPE = “ESTR” (reversal of month end labor
estimate)

 Else
 Set LABOR_RECORD_FLAG = “N”

Populate both CREATION and LAST_MOD fields.
 Set NAT.NDW_CREATION_DATE to system date
 Set NAT.NDW_CREATION_USER_NAME to user’s name
 Set NAT.NDW_CREATION_DEVICE_NAME to device

 Set NAT.NDW_LAST_MOD_DATE to system date
 Set NAT.NDW_LAST_MOD_USER_NAME to user’s name
 Set NAT.NDW_LAST_MOD_DEVICE_NAME to device

 Set all Line Office extract fields to null

Update control counts.

 Add 1 to v.RECORD_COUNT.
 Add (TR.DEBIT_AMOUNT – TR.CREDIT_AMOUNT) to v.AMOUNT_PROCESSED.

Enterprise Systems Engineering 94 Final (04/11/2002)

When all records have been processed, update the NDW_REFRESH_PARAMS,
NDW_REFRESH_RUN_CONTROL, NDW_PROCESS_LOG and commit records.

 If last TRIAL record
 Update NDW_REFRESH_PARAMS
 Where ROUTINE_NAME = “NDW011_REFRESH”
 Set LAST_TRANS_NO_PROCESSED = TR.TRIAL_ID
 Set NDW_LAST_REFRESH_ID_NO = NRRC.REFRESH_ID_NO
 Set NDW_LAST_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO

 Update NDW_REFRESH_RUN_CONTROL
 Set NDW011_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO
 Set NDW011_MAX_VALUE_PROCESSED = TR.TRIAL_ID

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW011_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = last TRIAL_ID read from TRIAL
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = .AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Process completed. Last TRIAL_ID
processed updated”.

 All other fields remain null.
 Commit records to database
 End If last

After specified number of records have been processed, commit.
 After each ND.NDW011_RECORDS_TO_COMMIT records
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW011_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = TR.TRIAL_ID
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = v.AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Cumulative records committed to
NDW_AP_TRANS table.”.

 All other fields remain null.
 Commit records to database.
 End After Each

If the operator has updated the ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”,
update the NDW_REFRESH_PARAMS, NDW_REFRESH_RUN_CONTROL,
NDW_PROCESS_LOG, commit records and terminate processing.

 Read VALUE from NDW_DEFAULTS
 Where ITEM_NAME = “END_NDW_BATCH_PROCESSES_FLAG”.
 If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Update NDW_REFRESH_PARAMS
 Where ROUTINE_NAME = “NDW011_REFRESH”
 Set LAST_TRANS_NO_PROCESSED = TR.TRIAL_ID
 Set NDW_LAST_REFRESH_ID_NO = NRRC.REFRESH_ID_NO

Enterprise Systems Engineering 95 Final (04/11/2002)

 Set NDW_LAST_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO

 Update NDW_REFRESH_RUN_CONTROL
 Set NDW011_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO
 Set NDW011_MAX_VALUE_PROCESSED = TR.TRIAL_ID

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW011_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = last TRIAL_ID read from TRIAL
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = v.AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Commit records to database.
 Terminate processing.
 End If END_NDW_BATCH_PROCESSES_FLAG
End If TRANS_SOURCE <> “BEGBAL”
End Loop for Matching to NDW_AP_TRANS

Close Routine
Write all NDW_PROCESS_LOG records written for this routine to the .log file and close
file.
If ND.END_NDW_BATCH_PROCESSED_FLAG = “N”
 And NRRC.NDW011_MAX_VALUE_PROCESSED < NRRC.MAX_TRIAL
 Restart the routine at the beginning for an additional pass until all records are processed.
Else
 Terminate processing.

Enterprise Systems Engineering 96 Final (04/11/2002)

4.3.3 Refresh Transaction Tables From Budget Tables (NDW012_REFRESH.SQL)

The purpose of this table is to provide detailed Budget Operating Plan data for
Line/Field Office extract and reporting purposes.

Routine Name

NDW012_REFRESH.SQL

Input:

This routine will be invoked through a regularly scheduled cron job and uses
the following data as input:

 CAMS Data Warehouse Tables:

 BUDGET_CONTROL (BC)

 BUDGET_DETAIL (BD)

 NOAA Data Mart Tables:

 NDW_BOP_DETAIL (NBD)

 NDW_REFRESH_PARAMS (NRP)

 NDW_DEFAULTS (ND)

 NDW_REFRESH_RUN_CONTROL (NRRC)

Output:

This routine will produce the following return parameters, output files,
database tables, and/or reports:

 NOAA Data Mart Tables:

 NDW_BOP_DETAIL (NDS)

 NDW_REFRESH_PARAMS (NRP)

 NDW_REFRESH_RUN_CONTROL (NRRC)

 NDW_PROCESS (NP)

 Reports:

 NDW012_RE999_PASS999.log (if database is available).
 NDW012_yyyymmdd.log (if database is not available).

Enterprise Systems Engineering 97 Final (04/11/2002)

 Only keep 10 versions of NDW012 log files in the
directory.

Processing Logic:

Begin Routine
Write date/time started to .log file.
Write header information to .log file.

Determine refresh run. There should be only one refresh run active at any time, although
multiple processes may be run in parallel.
Read REFRESH_ID_NO, NDW012_REFRESH_PASS_NO,
CFS_SNAPSHOTS_COMPLETE
 From NDW_REFRESH_RUN_CONTROL (NRRC)
 Where ACTIVE_STATUS = “Y”.

If more than one entry
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW012_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: More than one active
NDW_REFRESH_RUN_CONTROL entry.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

If no entry found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW012_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: No active NDW_REFRESH_RUN_CONTROL
entry found.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Set v.REFRESH_PASS_NO = NDW012_REFRESH_PASS_NO + 1

If the snapshots of the CFS tables are not complete, terminate the job.
If NRRC.CFS_SNAPSHOTS_COMPLETE = “N”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW012_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Snapshots of CFS tables not complete.”
 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Determine maximum number of transactions to process and how often to commit.
Read VALUE(s)
 From NDW_DEFAULTS (ND) for the following ITEM_NAMEs

Enterprise Systems Engineering 98 Final (04/11/2002)

 ITEM_NAME = “NDW012_RECORDS_TO_COMMIT”
 ITEM_NAME = “NDW_BOP_DETAIL_PRIVACY”
 ITEM_NAME = “NDW_BOP_DETAIL_TABLE_ID”
 ITEM_NAME = “END_NDW_BATCH_PROCESSES_FLAG”
If any entry cannot be found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW012_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Entry not found in NDW_DEFAULTS for
ITEM_NAME: ??”.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

If the operator has updated the ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”,
update NDW_PROCESS_LOG and terminate processing.
If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW012_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.
End END_NDW_BATCH_PROCESSES_FLAG

Determine last modification date and trans_no fields that should be used for selecting
records from BUDGET_CONTROL and BUDGET_DETAIL for this routine.
Read LAST_TRANS_NO_PROCESSED, BEGIN_MOD_DATE
 From NDW_REFRESH_PARAMS (NRP)
 Where ROUTINE_NAME = “NDW012_REFRESH”
 And TABLE_NAME = “BUDGET_CONTROL”.
If no entry found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW012_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: No entry found for routine in
NDW_REFRESH_PARAMS table.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Write record to log table.
Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW012_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = NRP.LAST_TRANS_NO_PROCESSSED
 MODIFICATION_DATE = NRP.BEGIN_MOD_DATE

Enterprise Systems Engineering 99 Final (04/11/2002)

 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
STEP_DESCR = “NDW-000TBD: Routine started with key fields > this date and
number.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Read BUDGET_CONTROL & BUDGET_DETAIL Records
Process only BUDGET_CONTROL/DETAIL records since the last refresh.

Note that because budget records can be approved out of sequence and there is no unique
identifier for the BUDGET_DETAIL record, there is no RECORDS_TO_PROCESS field
associated with these records. All newly approved BUDGET_CONTROL and
BUDGET_DETAIL records are selected for processing.

Read BUDGET_CONTROL & BUDGET_DETAIL records
 Where BC.APPROVED_FLAG = “Y”

And BC.MODIFICATION_DATE ||3 BC.TRANS_NO > NRP.BEGIN_MOD_DATE ||
NRP.LAST_TRANS_NO_PROCESSED

Order by BC.MODIFICATION_DATE, BC.TRANS_NO

Insert NDW_BOP_DETAIL Records
Insert NDW_BOP_DETAIL record

Create a new record in the NDW_BOP_DETAIL table for each BUDGET_DETAIL record
processed.

Set NDW_BOP_DETAIL fields to BUDGET_CONTROL/BUDGET_DETAIL fields as
reflected in Appendix B – Transaction Table Record Formats.

Set TRANS_TABLE_INDICATOR to ND.TABLE_ID_NDW_BOP_DETAIL.

 Set NDW_TRANS_NO to next sequential number from NDW_MAXSEQNOS

 Where TABLE_NAME = “NDW_BOP_DETAIL”

Set MONTH_CLOSED_FLAG = “N”.

Set PRIVACY_ACT_APPLIES to ND.PRIVACY_NDW_BOP_DETAIL.

Populate both CREATION and LAST_MOD fields.

 Set NDW_CREATION_DATE to system date
 Set NDW_CREATION_USER_NAME to user’s name
 Set NDW_CREATION_DEVICE_NAME to device

 Set NDW_LAST_MOD_DATE to system date
 Set NDW_LAST_MOD_USER_NAME to user’s name
 Set NDW_LAST_MOD_DEVICE_NAME to device

 Set all Line Office extract fields to null

Update control counts.

3The symbol || indicates that the fields should be concatenated (strung together).

Enterprise Systems Engineering 100 Final (04/11/2002)

 Add 1 to v.RECORD_COUNT.
Add BD.AMOUNT to v.AMOUNT_PROCESSED.

When all records have been processed, update the NDW_REFRESH_PARAMS,
NDW_REFRESH_RUN_CONTROL, NDW_PROCESS_LOG and commit records.

 If last BUDGET_DETAIL record
 Update NDW_REFRESH_PARAMS
 Where ROUTINE_NAME = “NDW012_REFRESH”
 Set LAST_TRANS_NO_PROCESSED = BC.TRANS_NO
 Set BEGIN_MOD_DATE = BC.MODIFICATION_DATE
 Set NDW_LAST_REFRESH_ID_NO = NRRC.REFRESH_ID_NO
 Set NDW_LAST_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO

 Update NDW_REFRESH_RUN_CONTROL
 Set NDW012_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO

Set NDW012_MAX_VALUE_PROCESSED = BC.TRANS_NO
Set NDW012_LAST_MOD_DATE = BC.MODIFICATION_DATE

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW012_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = BC.TRANS_NO

MODIFICATION_DATE = BC.MODIFICATION_DATE
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = v.AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Process completed. Last approved
BUDGET_CONTROL record with this key processed”.

 All other fields remain null.
 Commit records to database
 End If last

After specified number of records have been processed, commit.
 After each ND.NDW012_RECORDS_TO_COMMIT records

Check to see if the next BUDGET_DETAIL record has the same TRANS_NO as the
last one processed.

Because the BUDGET_DETAIL record does not have a unique key, the
BUDGET_DETAIL records must be processed until the BUDGET_CONTROL
TRANS_NO key changes.

If so, continue processing the records until the next record’s TRANS_NO changes.

Else

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW012_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

 TRANS_NO = BC.TRANS_NO
 MODIFICATION_DATE = BC.MODIFICATION_DATE
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME

Enterprise Systems Engineering 101 Final (04/11/2002)

 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = v.AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Cumulative records committed to
NDW_BOP_DETAIL table.”.

 All other fields remain null.
 Commit records to database.
 End After Each

If the operator has updated the ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”,
update the NDW_REFRESH_PARAMS, NDW_REFRESH_RUN_CONTROL,
NDW_PROCESS_LOG, commit records and terminate processing.

 Read VALUE from NDW_DEFAULTS
 Where ITEM_NAME = “END_NDW_BATCH_PROCESSES_FLAG”.
 If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Update NDW_REFRESH_PARAMS
 Where ROUTINE_NAME = “NDW012_REFRESH”
 Set LAST_TRANS_NO_PROCESSED = BC.TRANS_NO
 Set BEGIN_MOD_DATE = BC.MODIFICATION_DATE
 Set NDW_LAST_REFRESH_ID_NO = NRRC.REFRESH_ID_NO
 Set NDW_LAST_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO

 Update NDW_REFRESH_RUN_CONTROL
 Set NDW012_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO

Set NDW012_MAX_VALUE_PROCESSED = BC.TRANS_NO
Set NDW012_LAST_MOD_DATE = BC.MODIFICATION_DATE

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW012_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = BC.TRANS_NO

MODIFICATION_DATE = BC.MODIFICATION_DATE
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = v.AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Commit records to database.
 Terminate processing.

 End If END_NDW_BATCH_PROCESSES_FLAG
End Loop for Matching to NDW_BOP_DETAIL

Close Routine
Write all NDW_PROCESS_LOG records written for this routine to the .log file and close
file.
Terminate processing.

Enterprise Systems Engineering 102 Final (04/11/2002)

4.3.4 Refresh Detailed Labor Data (NDW013_REFRESH.SQL)

The labor detail table (NDW_LABOR_DETAIL) stores the detailed labor
records as received by the National Finance Center (NFC) through the
NFC002 interface, labor detail adjustments made through the CFS NFC005
screen, and month end transaction defaults generated through the NFC004
routine.

This routine reads the new GJ_CONTROL, GJ_DETAIL, and
GJ_EMPLOYEE records approved since the last NOAA Data Mart refresh
was run and creates new records in the NDW_LABOR_DETAIL table.

Routine Name

NDW013_REFRESH.SQL

Input:

This routine will be invoked through a regularly scheduled cron job and uses
the following data as input:

 CAMS Data Warehouse Tables:

 GJ_CONTROL (GC)

 GJ_DETAIL (GD)

 GJ_EMPLOYEE (GE)

 NFC_UTILITY_VALUES (NUV)

 EMPLOYEE_CONTROL (EC)

 NOAA Data Mart Tables:

 NDW_LABOR_DETAIL (NLD)

 NDW_REFRESH_PARAMS (NRP)

 NDW_DEFAULTS (ND)

 NDW_REFRESH_RUN_CONTROL (NRRC)

 NDW_ACCS_ID_CONTROL (NAIC)

Output:

This routine will produce the following return parameters, output files,
database tables, and/or reports:

Enterprise Systems Engineering 103 Final (04/11/2002)

 NOAA Data Mart Tables:

 NDW_LABOR_DETAIL (NLD)

 NDW_REFRESH_PARAMS (NRP)

 NDW_REFRESH_RUN_CONTROL (NRRC)

 NDW_PROCESS (NP)

 Reports:

 NDW013_RE999_PASS999.log (if database is available).
 NDW013_yyyymmdd.log (if database is not available).
 Only keep 10 versions of NDW013 log files in the

directory.

Processing Logic:

Begin Routine
Write date/time started to .log file.
Write header information to .log file.

Determine refresh run. There should be only one refresh run active at any time, although
multiple processes may be run in parallel.
Read REFRESH_ID_NO, NDW013_REFRESH_PASS_NO,
CFS_SNAPSHOTS_COMPLETE
 From NDW_REFRESH_RUN_CONTROL (NRRC)
 Where ACTIVE_STATUS = “Y”.

If more than one entry
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW013_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: More than one active
NDW_REFRESH_RUN_CONTROL entry.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

If no entry found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW013_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: No active NDW_REFRESH_RUN_CONTROL
entry found.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Set v.REFRESH_PASS_NO = NDW013_REFRESH_PASS_NO + 1

Enterprise Systems Engineering 104 Final (04/11/2002)

If the snapshots of the CFS tables are not complete, terminate the job.
If NRRC.CFS_SNAPSHOTS_COMPLETE = “N”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW013_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Snapshots of CFS tables not complete.”
 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Determine maximum number of transactions to process and how often to commit.
Read VALUE(s)
 From NDW_DEFAULTS (ND) for the following ITEM_NAMEs
 ITEM_NAME = “NDW013_RECORDS_TO_COMMIT”
 ITEM_NAME = “NDW_LABOR_DETAIL_PRIVACY”
 ITEM_NAME = “NDW_LABOR_DETAIL_TABLE_ID”
 ITEM_NAME = “END_NDW_BATCH_PROCESSES_FLAG”
If any entry cannot be found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW013_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Entry not found in NDW_DEFAULTS for
ITEM_NAME: ??”.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

If the operator has updated the ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”,
update NDW_PROCESS_LOG and terminate processing.
If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW013_REFRESH.SQL”
 DATE_TIME = system date/time

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Terminate processing.
End If END_NDW_BATCH_PROCESSES_FLAG

Determine last modification date and transaction number fields that should be used for
selecting records from GJ_CONTROL, GJ_DETAIL, and GJ_EMPLOYEE for this
routine.
Read LAST_TRANS_NO_PROCESSED and BEGIN_MOD_DATE from
NDW_REFRESH_PARAMS (NRP)
 Where ROUTINE_NAME = “NDW013_REFRESH”
 And TABLE_NAME = “GJ_CONTROL”.
If no entry found
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW013_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO

Enterprise Systems Engineering 105 Final (04/11/2002)

 DATE_TIME = system date/time
STEP_DESCR = “NDW-000TBD: No entry found for routine in
NDW_REFRESH_PARAMS table.”

 All other fields remain null.
 Write NDW_PROCESS_LOG entry to .log file.
 Terminate processing.

Write record to log table.
Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW013_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = NRP.LAST_TRANS_NO_PROCESSED
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME

STEP_DESCR = “NDW-000TBD: Routine started with key fields > this date and
number.”

 All other fields remain null.

Read GJ_CONTROL Records
Process only GJ_CONTROL, GJ_DETAIL, and GEJ_EMPLOYEE records since the last
refresh.

Select GJ_CONTROL & subordinate GJ_DETAIL and GJ_EMPLOYEE records
 Where GC.MANAGER_FLAG = ‘Y’
 And GC.REF begins with ‘NFC’ or ‘NOA’

And GC.MODIFICATION_DATE || GC.TRANS_NO >
 NRP.BEGIN_MOD_DATE || NRP.LAST_TRANS_NO_PROCESSED

Order by GC.MODIFICATION_DATE, GC.TRANS_NO

For each GJ_EMPLOYEE (GE) record

Insert NDW_LABOR_DETAIL Records
Insert NDW_LABOR_DETAIL record based on GJ_EMPLOYEE records

Set NDW_LABOR_DETAIL fields to GJ_CONTROL, GJ_DETAIL, and
GJ_EMPLOYEE fields as reflected in Appendix B – Transaction Table Record Formats.

Update NDW Table Indicator and Trans No.
Set TRANS_TABLE_INDICATOR to ND.TABLE_ID_NDW_LABOR_DETAIL.

 Set NDW_TRANS_NO to next sequential number from NDW_MAXSEQNOS

Where TABLE_NAME = “NDW_LABOR_DETAIL”.

 Set PRIVACY_ACT_APPLIES to ND.PRIVACY_NDW_LABOR_DETAIL.

Update Employee Information
Select EMPLOYEE_CONTROL (EC) record
 Where EC.EMP_NO = GE.EMP_NO

 Set NLD.SSN to EC.SSN
 Set NLD.EMP_FIRST_NAME to EC.FIRST_NAME
 Set NLD.EMP_MIDDLE_NAME to EC.MIDDLE_NAME
 Set NLD.EMP_LAST_NAME to EC.LAST_NAME

Enterprise Systems Engineering 106 Final (04/11/2002)

 Set NLD.EMP_TITLE to EC.EMP_TITLE

Determine NDW_ACCS_ID
 Read NDW_ACCS_ID_CONTROL (NAIC)
 Matching ACCS fields from GJ records to NAIC ACCS fields.

 If no match found

Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW013_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = GC.TRANS_NO
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME

STEP_DESCR = “NDW-000TBD: WARNING: Unique ACCS ID could not be
found for this ACCS.”

 All other fields remain null.
Continue processing

 Else
 Set NAT.NDW_ACCS_ID = NAIC.NDW_ACCS_ID

Derive FISCAL_MONTH field from GL_END_DATE
 If GC.GL_END_DATE month > 9
 Set NAT.FISCAL_MONTH = GC.GL_END_DATE month - 9
 Else
 Set NAT.FISCAL_MONTH = GC.GL_END_DATE month + 3

Indicate type of labor record type
 If GC.REF like “NFC%” or “NOA%”
 And GC.DESCR = “NFC002”
 Set NDW_LABOR_TYPE = “NFC” (actual labor from NFC interface)
 Else if … logic TBD
 Set NDW_LABOR_TYPE = “ADJ” (labor adjustment thru NFC005 screen)
 Else if … logic TBD
 Set NDW_LABOR_TYPE = “DEF” (labor default applied thru NFC004)
 Else
 Set NDW_LABOR_TYPE = ‘UNK” (unknown)

Populate both CREATION and LAST_MOD fields.
 Set NLD.NDW_CREATION_DATE to system date
 Set NLD.NDW_CREATION_USER_NAME to user’s name
 Set NLD.NDW_CREATION_DEVICE_NAME to device

 Set NLD.NDW_LAST_MOD_DATE to system date
 Set NLD.NDW_LAST_MOD_USER_NAME to user’s name
 Set NLD.NDW_LAST_MOD_DEVICE_NAME to device

 Set all Line Office extract fields to null

Update control counts.

 Add 1 to v.RECORD_COUNT.
 Add (NLD.AMOUNT) to v.AMOUNT_PROCESSED.

When all records have been processed, update the NDW_REFRESH_PARAMS,
NDW_REFRESH_RUN_CONTROL, NDW_PROCESS_LOG and commit records.

Enterprise Systems Engineering 107 Final (04/11/2002)

 If last GJ_EMPLOYEE record
 Update NDW_REFRESH_PARAMS
 Where ROUTINE_NAME = “NDW013_REFRESH”
 Set LAST_TRANS_NO_PROCESSED = GC.TRANS_NO
 Set BEGIN_MOD_DATE = GC.MODIFICATION_DATE
 Set NDW_LAST_REFRESH_ID_NO = NRRC.REFRESH_ID_NO
 Set NDW_LAST_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO

 Update NDW_REFRESH_RUN_CONTROL
 Set NDW013_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO
 Set NDW013_MAX_VALUE_PROCESSED = GC.TRANS_NO
 Set NDW013_LAST_MOD_DATE = GC.MODIFICATION_DATE

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW013_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = last TRANS_NO read from GJ_CONTROL
 MODIFICATION_DATE = GC.MODIFICATION_DATE
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = .AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Process completed. Last TRANS_NO
processed updated”.

 All other fields remain null.
 Commit records to database
 End If last

After specified number of records have been processed, commit.
 After each ND.NDW013_RECORDS_TO_COMMIT records
 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW013_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = GC.TRANS_NO
 MODIFICATION_DATE = GC.MODIFICATION_DATE
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = v.AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Cumulative records committed to
NDW_LABOR_DETAIL table.”.

 All other fields remain null.
 Commit records to database.
 End After Each

If the operator has updated the ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”,
update the NDW_REFRESH_PARAMS, NDW_REFRESH_RUN_CONTROL,
NDW_PROCESS_LOG, commit records and terminate processing.

 Read VALUE from NDW_DEFAULTS
 Where ITEM_NAME = “END_NDW_BATCH_PROCESSES_FLAG”.
 If ND.END_NDW_BATCH_PROCESSES_FLAG = “Y”
 Update NDW_REFRESH_PARAMS
 Where ROUTINE_NAME = “NDW013_REFRESH”

Enterprise Systems Engineering 108 Final (04/11/2002)

 Set LAST_TRANS_NO_PROCESSED = GC.TRANS_NO
 Set BEGIN_MOD_DATE = GC.MODIFICATION_DATE
 Set NDW_LAST_REFRESH_ID_NO = NRRC.REFRESH_ID_NO
 Set NDW_LAST_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO

 Update NDW_REFRESH_RUN_CONTROL
 Set NDW013_REFRESH_PASS_NO = v.LAST_REFRESH_PASS_NO
 Set NDW013_MAX_VALUE_PROCESSED = GC.TRANS_NO
 Set NDW013_LAST_MOD_DATE = GC.MODIFICATION_DATE

 Write record to NDW_PROCESS_LOG where
 ROUTINE_NAME = “NDW013_REFRESH.SQL”
 REFRESH_ID = NRRC.REFRESH_ID_NO
 PASS_NO = v.REFRESH_PASS_NO
 DATE_TIME = system date/time
 TRANS_NO = last TRANS_NO read from GJ_CONTROL
 MODIFICATION_DATE = GC.MODIFICATION_DATE
 TABLE_NAME_PROCESSED = NRP.TABLE_NAME
 RECORDS_PROCESSED = v.RECORD_COUNT
 AMOUNT_PROCESSED = v.AMOUNT_PROCESSED

STEP_DESCR = “NDW-000TBD: Process terminated due to
END_NDW_BATCH_PROCESSES_FLAG = “Y”“.

 All other fields remain null.
 Commit records to database.
 Terminate processing.
 End If END_NDW_BATCH_PROCESSES_FLAG
End Loop for Matching to NDW_LABOR_DETAIL

Close Routine
Write all NDW_PROCESS_LOG records written for this routine to the .log file and close
file.

Terminate processing.

Enterprise Systems Engineering 109 Final (04/11/2002)

4.4 Line/Field Office Support Packages

4.4.1 NDW_RECORD_LO_EXTRACT

In order to ensure consistency in how records are tagged as being extracted,
the following database package has been developed for use by the Line/Field
Office extract routines. The Line/Field Office extract routine should call this
package for each record that is extracted. The routine will populate the
Original extract fields if the pre_ORIGINAL_EXTRACT_DATE is null and
the pre_LAST_MOD extract fields for the extracted record in all cases.

Routine Name

NDW_RECORD_LO_EXTRACT

Input:

This routine will be invoked through the various Line/Field Office extract
routines:

 Parameters

 Table Name

 NDW_TRANS_NO

 Extract Prefix

 Calling routine name

 NOAA Data Mart Tables:

 As identified by Table Name parameter

Output:

This routine will produce the following return parameters, output files,
database tables, and/or reports:

 Parameters

 Table Name

 NDW_TRANS_NO

 Extract Prefix

 Calling routine name

 Return Code

Enterprise Systems Engineering 110 Final (04/11/2002)

 Return Message

 NOAA Data Mart Tables:

 As identified by Table Name parameter

Processing Logic:

Accept parameters passed from Line/Field Office extract routine.
Accept p.TABLE_NAME, p.NDW_TRANS_NO, p.EXTRACT_PREFIX,
v.CALLING_ROUTINE parameters.

Update extract fields.
Update p.TABLE_NAME (T)
 Where T.NDW_TRANS_NO = p.NDW_TRANS_NO
 Set T.“p.EXTRACT_PREFIX”_LAST_EXTRACT_DATE to system date

Set T.“p.EXTRACT_PREFIX”_LAST_MOD_USER_NAME to user’s Oracle ID.
Set T.“p.EXTRACT_PREFIX”_LAST_MOD_DEVICE_NAME to “BATCH “ ||
p.CALLING_ROUTINE

 Add 1 to “p.EXTRACT_PREFIX”_EXTRACT_ITERATION

 If “p.EXTRACT_PREFIX”_ORIGINAL_EXTRACT_DATE is null

Set “p.EXTRACT_PREFIX”_ORIGINAL_EXTRACT_DATE to system_date
Set “p.EXTRACT_PREFIX”_ORIGINAL USER_NAME to user’s Oracle ID.
Set “p.EXTRACT_PREFIX”_ORIGINAL_DEVICE_NAME to “BATCH “ ||
p.CALLING_ROUTINE.

 End If

End Update

If record was updated properly, send back p.RETURN_CODE = 0.

If record could not be updated, send back:

Set p.RETURN_CODE from NDW_RETURN_CODE_CONTROL table based on error
encountered.

Set p.RETURN_MESSAGE to SHORT_MESSAGE from
NDW_RETURN_CODE_CONTROL table based on error encountered.

End Routine

Enterprise Systems Engineering 111 Final (04/11/2002)

4.5 Data Integrity

Data integrity checks will be implemented as part of the NOAA Data Mart.
These checks will help ensure that all tables are updated properly and reflect
the same base values from the source tables (e.g., TRIAL). Any discrepancies
in balances will be highlighted in a report so that appropriate action may be
taken.

The NOAA Data Mart integrity checks will be done using only NOAA Data
Mart tables. Additional data integrity checks are being implemented by the
CAMS Data Warehouse team to ensure that data from production CFS is
being accurately transferred to the data warehouse.

4.5.1 Refresh Status Report

At the end of the NOAA Data Mart refresh routine, a series of queries will be
performed and a formatted Refresh Status Report produced to indicate the end
state of the data. These queries will generate control totals (at a minimum by
BUREAU_CODE and FISCAL_YEAR) for each of the tables populated by
the NOAA Data Mart refresh routines as well as the source tables from which
they are being populated.

A report will then be developed to list all of the control totals obtained and
highlight any discrepancies between the tables.

4.5.2 Refresh Run Control Table

The NDW_REFRESH_RUN_CONTROL table will be used by the NDW
application administrator to ensure data integrity for a specific refresh run.
This table reflects in one row the status of all routines of the refresh process.
It indicates:

 The maximum target key fields that should be processed.

 The actual maximum key field processed for each routine.

 The refresh pass number for the routine.

 The status of the refresh.

 If the refresh was stopped by the operator.

By reviewing this record, the operator can determine whether all routines met
their target update figures or if there may be a problem with the refresh
process.

Enterprise Systems Engineering 112 Final (04/11/2002)

4.5.3 Process Log

The NDW_PROCESS_LOG is used by every NOAA Data Mart batch routine
to record when the routine started, when it completed, and information at key
checkpoints within the process.

This table helps ensure data integrity by providing the system administrator
the capability to monitor job progress, to determine at what point a routine
was terminated, and the manner in which it was terminated.

Enterprise Systems Engineering 113 Final (04/11/2002)

Appendix A – Summary Table Record Formats

This appendix is provided as separate document called “Appendix A – NOAA Data Mart Summary Table Definitions”.

Enterprise Systems Engineering 114 Final (04/11/2002)

Appendix B – Transaction Table Record Formats

This appendix is provided as separate document called “Appendix B – NOAA Data Mart Transaction Table Definitions”.

Enterprise Systems Engineering 115 Final (04/11/2002)

Appendix C – Support Table Record Layouts

This appendix is provided as separate document called “Appendix C – NOAA Data Mart Support Table Definitions”.

Enterprise Systems Engineering 116 Final (04/11/2002)

Appendix D – Reference Table Record Layouts

The following pages contain descriptions of tables currently available within the CAMS
Data Warehouse that may be used for reference by users. Many of these tables contain a
code followed by a textual description. Other tables contains a considerable amount of
data (e.g., CUSTOMER and VENDOR_CONTROL). These tables will need to reviewed
with Finance to determine what level of access should be provided to the user
community.

Table Name: CUSTOMER

Comments: Snapshot for CFS table CUSTOMER

Columns:

Name Data Type Nulls? Default Value
1 CUSTOMER_NO NUMBER(10) Y
2 CUSTOMER_CODE VARCHAR2(6) Y
3 CUSTOMER_NAME VARCHAR2(40) Y
4 ATTENTION_TO VARCHAR2(40) Y
5 ADDRESS1 VARCHAR2(40) Y
6 ADDRESS2 VARCHAR2(40) Y
7 ADDRESS3 VARCHAR2(40) Y
8 CITY VARCHAR2(25) Y
9 ADDRESS_STATE VARCHAR2(2) Y
10 ZIP_CODE VARCHAR2(10) Y
11 COUNTRY_CODE VARCHAR2(6) Y
12 MAIN_PHONE_NO VARCHAR2(20) Y
13 AP_PHONE_NO VARCHAR2(20) Y
14 FAX_NO VARCHAR2(20) Y
15 OTHER_PHONE_NO VARCHAR2(20) Y
16 NOTES VARCHAR2(240) Y
17 CREDIT_LIMIT NUMBER(14) Y
18 BILLING_CYCLE VARCHAR2(6) Y
19 AUTHORIZED_CHARGERS VARCHAR2(240) Y
20 ACTIVE_STATUS VARCHAR2(1) Y
21 STATUS_DATE DATE Y
22 INVOICE_TYPE VARCHAR2(6) Y
23 CUSTOMER_TYPE VARCHAR2(6) Y
24 DELETE_DATE DATE Y
25 ORIGIN_DATE DATE Y
26 NET_DAYS NUMBER(2) Y
27 DISCOUNT_PERCENT NUMBER(6,3) Y
28 DISCOUNT_DAYS NUMBER(2) Y
29 ACCEPT_PARTIALS VARCHAR2(6) Y
30 ACCEPT_BACKORDERS VARCHAR2(6) Y
31 DOMESTIC_FLAG VARCHAR2(1) Y

Enterprise Systems Engineering 117 Final (04/11/2002)

Name Data Type Nulls? Default Value
32 TIN_NO VARCHAR2(11) Y
33 TYPE_1099 VARCHAR2(6) Y
34 INTERNAL_FLAG VARCHAR2(1) Y
35 CHARGE_SHIPPING_FLAG VARCHAR2(1) Y
36 FORM_1099_DATE DATE Y
37 FORM_1042_DATE DATE Y
38 INCOME_CODE VARCHAR2(6) Y
39 EXEMPTION_CODE VARCHAR2(6) Y
40 RECIPIENT_TYPE VARCHAR2(6) Y
41 INTERFACE_OPTION_CODE VARCHAR2(6) Y
42 INTERFACE_CUSTOMER_NO NUMBER(10) Y
43 USER_NAME VARCHAR2(30) Y
44 MODIFICATION_DATE DATE Y
45 DEVICE_NAME VARCHAR2(30) Y
46 DOC_BUREAU VARCHAR2(1) Y
47 FEDERAL_AGENCY_CODE VARCHAR2(6) Y

Enterprise Systems Engineering 118 Final (04/11/2002)

Table Name: CUSTOMER_CONTACT

Comments: Snapshot for CFS table CUSTOMER_CONTACT

Columns:

Name Data Type Nulls? Default Value
1 CUSTOMER_NO NUMBER(10) Y
2 CONTACT_NO NUMBER(6) Y
3 CONTACT_TYPE VARCHAR2(6) Y
4 NOTES VARCHAR2(240) Y
5 PHONE_NO VARCHAR2(20) Y
6 FAX_NO VARCHAR2(20) Y
7 DELETE_DATE DATE Y
8 ORIGIN_DATE DATE Y
9 FIRST_NAME VARCHAR2(20) Y
10 MIDDLE_NAME VARCHAR2(10) Y
11 LAST_NAME VARCHAR2(20) Y
12 COMPANY VARCHAR2(40) Y
13 ADDRESS1 VARCHAR2(40) Y
14 ADDRESS2 VARCHAR2(40) Y
15 ADDRESS3 VARCHAR2(40) Y
16 CITY VARCHAR2(25) Y
17 ADDRESS_STATE VARCHAR2(2) Y
18 ZIP_CODE VARCHAR2(10) Y
19 COUNTRY_CODE VARCHAR2(6) Y
20 TITLE VARCHAR2(40) Y
21 AGENCY_LOCATION_CODE VARCHAR2(10) Y
22 APPROP_SYMBOL VARCHAR2(21) Y
23 TAX_BODY NUMBER(4) Y
24 ORG1_CODE VARCHAR2(2) Y
25 ORG2_CODE VARCHAR2(2) Y
26 ORG3_CODE VARCHAR2(4) Y
27 ORG4_CODE NUMBER(2) Y
28 ORG5_CODE NUMBER(2) Y
29 ORG6_CODE NUMBER(2) Y
30 ORG7_CODE NUMBER(2) Y
31 PROJECT_CODE VARCHAR2(7) Y
32 BUREAU_CODE NUMBER(2) Y
33 ACTIVE_STATUS VARCHAR2(1) Y
34 STATUS_DATE DATE Y
35 USER_NAME VARCHAR2(30) Y
36 MODIFICATION_DATE DATE Y
37 DEVICE_NAME VARCHAR2(30) Y
38 TYPE_1099 VARCHAR2(6) Y

Enterprise Systems Engineering 119 Final (04/11/2002)

Table Name: DW_BUREAU_DIM

Comments: This table is used to define the bureau dimension

Columns:

Name Data Type Nulls? Default Value
1 BUREAU_KEY NUMBER(8) N
2 BUREAU_CODE NUMBER(2) N
3 BUREAU_NAME VARCHAR2(40) N

Enterprise Systems Engineering 120 Final (04/11/2002)

Table Name: DW_EMPLOYEE_DIM

Comments: This table is used to define the employee dimension

Name Data Type Nulls? Default Value
1 EMPLOYEE_KEY NUMBER(8) N
2 EMP_NO NUMBER(6) N
3 FIRST_NAME VARCHAR2(20) N
4 LAST_NAME VARCHAR2(20) N
5 MIDDLE_NAME VARCHAR2(15) Y
6 EMAIL_ADDRESS VARCHAR2(50) Y
7 MODIFICATION_DATE DATE Y

Enterprise Systems Engineering 121 Final (04/11/2002)

Table Name: FUND

Comments: Snapshot for CFS table FUND

Columns:

Name Data Type Nulls? Default Value
1 BUREAU_CODE NUMBER(2) Y
2 FUND_CODE NUMBER(2) Y
3 FUND_TITLE VARCHAR2(40) Y
4 FUND_TYPE VARCHAR2(6) Y
5 ACCOUNTING_BASIS VARCHAR2(6) Y
6 AVAILABILITY_CODE VARCHAR2(6) Y
7 BEGIN_DATE DATE Y
8 END_DATE DATE Y
9 PREFIX NUMBER(2) Y
10 SUFFIX NUMBER(2) Y
11 FUND_GROUP NUMBER(4) Y
12 INTERNAL_FLAG VARCHAR2(1) Y
13 APPROP_SYMBOL VARCHAR2(21) Y
14 APPROVED_BY VARCHAR2(26) Y
15 APPROVED_DATE DATE Y
16 APPROVED_EMP_NO NUMBER(6) Y
17 APPROVED_FLAG VARCHAR2(1) Y
18 USER_NAME VARCHAR2(30) Y
19 MODIFICATION_DATE DATE Y
20 DEVICE_NAME VARCHAR2(30) Y
21 ENTITY_FLAG VARCHAR2(1) Y
22 ENTITY_CODE VARCHAR2(5) Y
23 WARNING_PERCENT NUMBER Y

Enterprise Systems Engineering 122 Final (04/11/2002)

Table Name: OBJECT1

Comments: Snapshot for CFS table OBJECT1

Name Data Type Nulls? Default Value
1 OBJECT1_CODE NUMBER(2) Y
2 OBJECT1_DESCR VARCHAR2(40) Y
3 ACTIVE_STATUS VARCHAR2(1) Y
4 STATUS_DATE DATE Y
5 USER_NAME VARCHAR2(30) Y
6 MODIFICATION_DATE DATE Y
7 DEVICE_NAME VARCHAR2(30) Y

Table Name: OBJECT2

Comments: Snapshot for CFS table OBJECT2

Columns:

Name Data Type Nulls? Default Value
1 OBJECT1_CODE NUMBER(2) Y
2 OBJECT2_CODE NUMBER(2) Y
3 OBJECT2_DESCR VARCHAR2(40) Y
4 ACTIVE_STATUS VARCHAR2(1) Y
5 STATUS_DATE DATE Y
6 USER_NAME VARCHAR2(30) Y
7 MODIFICATION_DATE DATE Y
8 DEVICE_NAME VARCHAR2(30) Y

Table Name: OBJECT3

Comments: Snapshot for CFS table OBJECT3

Columns:

Name Data Type Nulls? Default Value
1 OBJECT1_CODE NUMBER(2) Y
2 OBJECT2_CODE NUMBER(2) Y
3 OBJECT3_CODE NUMBER(2) Y
4 OBJECT3_DESCR VARCHAR2(40) Y
5 ACTIVE_STATUS VARCHAR2(1) Y
6 STATUS_DATE DATE Y
7 USER_NAME VARCHAR2(30) Y
8 MODIFICATION_DATE DATE Y
9 DEVICE_NAME VARCHAR2(30) Y

Enterprise Systems Engineering 123 Final (04/11/2002)

Table Name: OBJECT4

Comments: Snapshot for CFS table OBJECT4

Columns:

Name Data Type Nulls? Default Value
1 OBJECT1_CODE NUMBER(2) Y
2 OBJECT2_CODE NUMBER(2) Y
3 OBJECT3_CODE NUMBER(2) Y
4 OBJECT4_CODE NUMBER(2) Y
5 OBJECT4_DESCR VARCHAR2(40) Y
6 OMB_OBJECT_CLASS NUMBER(3,1) Y
7 CF_CATEGORY NUMBER(3,1) Y
8 GOVERNMENTAL_FLAG VARCHAR2(1) Y
9 ACTIVE_STATUS VARCHAR2(1) Y
10 STATUS_DATE DATE Y
11 USER_NAME VARCHAR2(30) Y
12 MODIFICATION_DATE DATE Y
13 DEVICE_NAME VARCHAR2(30) Y

Enterprise Systems Engineering 124 Final (04/11/2002)

Table Name: ORG1

Comments: Snapshot for CFS table ORG1

Columns:

Name Data Type Nulls? Default Value
1 BUREAU_CODE NUMBER(2) Y
2 ORG1_CODE VARCHAR2(2) Y
3 ORG1_DESCR VARCHAR2(40) Y
4 ACTIVE_STATUS VARCHAR2(1) Y
5 STATUS_DATE DATE Y
6 USER_NAME VARCHAR2(30) Y
7 MODIFICATION_DATE DATE Y
8 DEVICE_NAME VARCHAR2(30) Y

Table Name: ORG2

Comments: Snapshot for CFS table ORG2

Columns:

Name Data Type Nulls? Default Value
1 BUREAU_CODE NUMBER(2) Y
2 ORG1_CODE VARCHAR2(2) Y
3 ORG2_CODE VARCHAR2(2) Y
4 ORG2_DESCR VARCHAR2(40) Y
5 ACTIVE_STATUS VARCHAR2(1) Y
6 STATUS_DATE DATE Y
7 USER_NAME VARCHAR2(30) Y
8 MODIFICATION_DATE DATE Y
9 DEVICE_NAME VARCHAR2(30) Y

Table Name: ORG3

Comments: Snapshot for CFS table ORG3

Columns:

Name Data Type Nulls? Default Value
1 BUREAU_CODE NUMBER(2) Y
2 ORG1_CODE VARCHAR2(2) Y
3 ORG2_CODE VARCHAR2(2) Y
4 ORG3_CODE VARCHAR2(4) Y
5 ORG3_DESCR VARCHAR2(40) Y
6 ACTIVE_STATUS VARCHAR2(1) Y
7 STATUS_DATE DATE Y
8 USER_NAME VARCHAR2(30) Y
9 MODIFICATION_DATE DATE Y

Enterprise Systems Engineering 125 Final (04/11/2002)

10 DEVICE_NAME VARCHAR2(30) Y

Enterprise Systems Engineering 126 Final (04/11/2002)

Table Name: ORG4

Comments: Snapshot for CFS table ORG4

Columns:

Name Data Type Nulls? Default Value
1 BUREAU_CODE NUMBER(2) Y
2 ORG1_CODE VARCHAR2(2) Y
3 ORG2_CODE VARCHAR2(2) Y
4 ORG3_CODE VARCHAR2(4) Y
5 ORG4_CODE NUMBER(2) Y
6 ORG4_DESCR VARCHAR2(40) Y
7 ACTIVE_STATUS VARCHAR2(1) Y
8 STATUS_DATE DATE Y
9 USER_NAME VARCHAR2(30) Y
10 MODIFICATION_DATE DATE Y
11 DEVICE_NAME VARCHAR2(30) Y

Table Name: ORG5

Comments: Snapshot for CFS table ORG5

Columns:

Name Data Type Nulls? Default Value
1 BUREAU_CODE NUMBER(2) Y
2 ORG1_CODE VARCHAR2(2) Y
3 ORG2_CODE VARCHAR2(2) Y
4 ORG3_CODE VARCHAR2(4) Y
5 ORG4_CODE NUMBER(2) Y
6 ORG5_CODE NUMBER(2) Y
7 ORG5_DESCR VARCHAR2(40) Y
8 ACTIVE_STATUS VARCHAR2(1) Y
9 STATUS_DATE DATE Y
10 USER_NAME VARCHAR2(30) Y
11 MODIFICATION_DATE DATE Y
12 DEVICE_NAME VARCHAR2(30) Y

Enterprise Systems Engineering 127 Final (04/11/2002)

Table Name: ORG6

Comments: Snapshot for CFS table ORG6

Columns:

Name Data Type Nulls? Default Value
1 BUREAU_CODE NUMBER(2) Y
2 ORG1_CODE VARCHAR2(2) Y
3 ORG2_CODE VARCHAR2(2) Y
4 ORG3_CODE VARCHAR2(4) Y
5 ORG4_CODE NUMBER(2) Y
6 ORG5_CODE NUMBER(2) Y
7 ORG6_CODE NUMBER(2) Y
8 ORG6_DESCR VARCHAR2(40) Y
9 ACTIVE_STATUS VARCHAR2(1) Y
10 STATUS_DATE DATE Y
11 USER_NAME VARCHAR2(30) Y
12 MODIFICATION_DATE DATE Y
13 DEVICE_NAME VARCHAR2(30) Y

Table Name: ORG7

Comments: Snapshot for CFS table ORG7

Columns:

Name Data Type Nulls? Default Value
1 BUREAU_CODE NUMBER(2) Y
2 ORG1_CODE VARCHAR2(2) Y
3 ORG2_CODE VARCHAR2(2) Y
4 ORG3_CODE VARCHAR2(4) Y
5 ORG4_CODE NUMBER(2) Y
6 ORG5_CODE NUMBER(2) Y
7 ORG6_CODE NUMBER(2) Y
8 ORG7_CODE NUMBER(2) Y
9 ORG7_DESCR VARCHAR2(40) Y
10 ACTIVE_STATUS VARCHAR2(1) Y
11 STATUS_DATE DATE Y
12 USER_NAME VARCHAR2(30) Y
13 MODIFICATION_DATE DATE Y
14 DEVICE_NAME VARCHAR2(30) Y

Enterprise Systems Engineering 128 Final (04/11/2002)

Table Name: DW_PAYMENT_OFFICE_DIM

Comments: This table is used to define the payment office dimension

Columns:

Name Data Type Nulls? Default Value
1 PAYMENT_OFFICE_KEY NUMBER(8) N
2 PAYMENT_OFFICE_CODE VARCHAR2(6) N
3 PAYMENT_OFFICE_NAME VARCHAR2(40) N

Enterprise Systems Engineering 129 Final (04/11/2002)

Table Name: PROGRAM1

Comments: snapshot table for snapshot CAMSADM.PROGRAM1

Columns:

Name Data Type Nulls? Default Value
1 BUREAU_CODE NUMBER(2) Y
2 FUND_CODE NUMBER(2) Y
3 PROGRAM1_CODE NUMBER(2) Y
4 PROGRAM1_DESCR VARCHAR2(40) Y
5 ACTIVE_STATUS VARCHAR2(1) Y
6 STATUS_DATE DATE Y
7 USER_NAME VARCHAR2(30) Y
8 MODIFICATION_DATE DATE Y
9 DEVICE_NAME VARCHAR2(30) Y

Table Name: PROGRAM2

Comments: Snapshot for CFS table PROGRAM2

Columns:

Name Data Type Nulls? Default Value
1 BUREAU_CODE NUMBER(2) Y
2 FUND_CODE NUMBER(2) Y
3 PROGRAM1_CODE NUMBER(2) Y
4 PROGRAM2_CODE NUMBER(2) Y
5 PROGRAM2_DESCR VARCHAR2(40) Y
6 ACTIVE_STATUS VARCHAR2(1) Y
7 STATUS_DATE DATE Y
8 USER_NAME VARCHAR2(30) Y
9 MODIFICATION_DATE DATE Y
10 DEVICE_NAME VARCHAR2(30) Y

Enterprise Systems Engineering 130 Final (04/11/2002)

Table Name: PROGRAM3

Comments: Snapshot for CFS table PROGRAM3

Columns:

Name Data Type Nulls? Default Value
1 BUREAU_CODE NUMBER(2) Y
2 FUND_CODE NUMBER(2) Y
3 PROGRAM1_CODE NUMBER(2) Y
4 PROGRAM2_CODE NUMBER(2) Y
5 PROGRAM3_CODE NUMBER(2) Y
6 PROGRAM3_DESCR VARCHAR2(40) Y
7 ACTIVE_STATUS VARCHAR2(1) Y
8 STATUS_DATE DATE Y
9 USER_NAME VARCHAR2(30) Y
10 MODIFICATION_DATE DATE Y
11 DEVICE_NAME VARCHAR2(30) Y

Table Name: PROGRAM4

Comments: Snapshot for CFS table PROGRAM4

Columns:

Name Data Type Nulls? Default Value
1 BUREAU_CODE NUMBER(2) Y
2 FUND_CODE NUMBER(2) Y
3 PROGRAM1_CODE NUMBER(2) Y
4 PROGRAM2_CODE NUMBER(2) Y
5 PROGRAM3_CODE NUMBER(2) Y
6 PROGRAM4_CODE NUMBER(3) Y
7 PROGRAM4_DESCR VARCHAR2(40) Y
8 ACTIVE_STATUS VARCHAR2(1) Y
9 STATUS_DATE DATE Y
10 USER_NAME VARCHAR2(30) Y
11 MODIFICATION_DATE DATE Y
12 DEVICE_NAME VARCHAR2(30) Y

Enterprise Systems Engineering 131 Final (04/11/2002)

Table Name: PROJECT

Comments: Snapshot for CFS table PROJECT

Columns:

Name Data Type Nulls? Default Value
1 FUND_CODE NUMBER(2) Y
2 BUREAU_CODE NUMBER(2) Y
3 PROGRAM1_CODE NUMBER(2) Y
4 PROGRAM2_CODE NUMBER(2) Y
5 PROGRAM3_CODE NUMBER(2) Y
6 PROGRAM4_CODE NUMBER(3) Y
7 PROJECT_CODE VARCHAR2(7) Y
8 PROJECT_DESCR VARCHAR2(40) Y
9 PROJECT_TYPE VARCHAR2(6) Y
10 MANAGER_EMP_NO NUMBER(6) Y
11 ADMIN_EMP_NO NUMBER(6) Y
12 TECHREP_EMP_NO NUMBER(6) Y
13 POC_EMP_NO NUMBER(6) Y
14 SCIENCE_CODE VARCHAR2(6) Y
15 NSF_CODE VARCHAR2(6) Y
16 WORK_SITE VARCHAR2(6) Y
17 PRIOR_PROJECT_CODE VARCHAR2(7) Y
18 DIRECT_FLAG VARCHAR2(1) Y
19 BEGIN_DATE DATE Y
20 END_DATE DATE Y
21 NOTES VARCHAR2(240) Y
22 S_ORG1_CODE VARCHAR2(2) Y
23 S_ORG2_CODE VARCHAR2(2) Y
24 S_ORG3_CODE VARCHAR2(4) Y
25 S_ORG4_CODE NUMBER(2) Y
26 S_ORG5_CODE NUMBER(2) Y
27 S_ORG6_CODE NUMBER(2) Y
28 S_ORG7_CODE NUMBER(2) Y
29 P_ORG1_CODE VARCHAR2(2) Y
30 P_ORG2_CODE VARCHAR2(2) Y
31 P_ORG3_CODE VARCHAR2(4) Y
32 P_ORG4_CODE NUMBER(2) Y
33 P_ORG5_CODE NUMBER(2) Y
34 P_ORG6_CODE NUMBER(2) Y
35 P_ORG7_CODE NUMBER(2) Y
36 BUDGET_INITIATIVE VARCHAR2(5) Y
37 APPROVED_FLAG VARCHAR2(1) Y
38 APPROVED_EMP_NO NUMBER(6) Y
39 APPROVED_BY VARCHAR2(30) Y
40 APPROVED_DATE DATE Y
41 USER_DEFINE_ACCS NUMBER(6) Y

Enterprise Systems Engineering 132 Final (04/11/2002)

Name Data Type Nulls? Default Value
42 ACTIVE_STATUS VARCHAR2(1) Y
43 STATUS_DATE DATE Y
44 STAT_UNIT_QTY NUMBER(8,2) Y
45 LABOR_ESTIMATE NUMBER(13,2) Y
46 OTHER_ESTIMATE NUMBER(13,2) Y
47 TOTAL_AUTHORIZATION NUMBER(13,2) Y
48 PROJECT_LEADER VARCHAR2(22) Y
49 BASE_FLAG VARCHAR2(1) Y
50 INTERFACE_OPTION_CODE VARCHAR2(6) Y
51 USER_NAME VARCHAR2(30) Y
52 MODIFICATION_DATE DATE Y
53 DEVICE_NAME VARCHAR2(30) Y
54 PRODUCTION_FLAG VARCHAR2(1) Y
55 THEME_CODE VARCHAR2(2) Y
56 GOAL_CODE VARCHAR2(2) Y

Enterprise Systems Engineering 133 Final (04/11/2002)

Table Name: TASK

Comments: Snapshot for CFS table TASK

Columns:

Name Data Type Nulls? Default Value
1 BUREAU_CODE NUMBER(2) Y
2 PROJECT_CODE VARCHAR2(7) Y
3 TASK_CODE VARCHAR2(3) Y
4 TASK_DESCR VARCHAR2(40) Y
5 BEGIN_DATE DATE Y
6 END_DATE DATE Y
7 NOTES VARCHAR2(240) Y
8 BE_STATUS VARCHAR2(1) Y
9 PR_STATUS VARCHAR2(1) Y
10 PO_STATUS VARCHAR2(1) Y
11 GJ_STATUS VARCHAR2(1) Y
12 FA_STATUS VARCHAR2(1) Y
13 AP_STATUS VARCHAR2(1) Y
14 AR_STATUS VARCHAR2(1) Y
15 LB_STATUS VARCHAR2(1) Y
16 TA_STATUS VARCHAR2(1) Y
17 ACTIVE_STATUS VARCHAR2(1) Y
18 STATUS_DATE DATE Y
19 USER_NAME VARCHAR2(30) Y
20 MODIFICATION_DATE DATE Y
21 DEVICE_NAME VARCHAR2(30) Y

Enterprise Systems Engineering 134 Final (04/11/2002)

Table Name: VENDOR_CONTROL

Comments: Snapshot for CFS table VENDOR_CONTROL

Columns:

Name Data Type Nulls? Default Value
1 VENDOR_NO NUMBER(10) Y
2 VENDOR_CODE VARCHAR2(9) Y
3 VENDOR_TYPE VARCHAR2(6) Y
4 ORIGIN_DATE DATE Y
5 STATUS_DATE DATE Y
6 ACTIVE_STATUS VARCHAR2(1) Y
7 DELETE_DATE DATE Y
8 SIC_CODE VARCHAR2(10) Y
9 LABOR_SURPLUS_FLAG VARCHAR2(1) Y
10 MINORITY_OWNED_FLAG VARCHAR2(1) Y
11 MINORITY_CODE VARCHAR2(6) Y
12 WOMAN_OWNED_FLAG VARCHAR2(1) Y
13 REPORT_NAME VARCHAR2(30) Y
14 SIZE_FLAG VARCHAR2(2) Y
15 VENDOR_ACCOUNT_NO VARCHAR2(20) Y
16 NET_DAYS1 NUMBER(2) Y
17 DISCOUNT_FLAG1 VARCHAR2(1) Y
18 DISCOUNT_AMOUNT1 NUMBER(8,3) Y
19 DISCOUNT_DAYS1 NUMBER(2) Y
20 NET_DAYS2 NUMBER(2) Y
21 DISCOUNT_FLAG2 VARCHAR2(1) Y
22 DISCOUNT_AMOUNT2 NUMBER(8,3) Y
23 DISCOUNT_DAYS2 NUMBER(2) Y
24 FOB_POINT VARCHAR2(8) Y
25 NOTES VARCHAR2(240) Y
26 ASSIGNMENT_FLAG VARCHAR2(1) Y
27 ASSIGNMENT_DATE DATE Y
28 FEDERAL_AGENCY_CODE VARCHAR2(6) Y
29 INTERFACE_OPTION_CODE VARCHAR2(6) Y
30 FOREIGN_FLAG VARCHAR2(1) Y
31 VENDOR_DIVISION VARCHAR2(25) Y
32 COMMON_PARENT_TIN VARCHAR2(9) Y
33 COMMON_PARENT_NAME VARCHAR2(30) Y
34 USER_NAME VARCHAR2(30) Y
35 MODIFICATION_DATE DATE Y
36 DEVICE_NAME VARCHAR2(30) Y
37 DOC_BUREAU VARCHAR2(1) Y
38 INTERNAL_FLAG VARCHAR2(1) Y

Enterprise Systems Engineering 135 Final (04/11/2002)

Table Name: VENDOR_DETAIL

Comments: snapshot table for snapshot CAMSADM.VENDOR_DETAIL

Columns:

Name Data Type Nulls? Default Value
1 VENDOR_NO NUMBER(10) N
2 VENDOR_ID NUMBER(6) N
3 ADDRESS_TYPE VARCHAR2(6) N
4 ADDRESS_NAME VARCHAR2(30) Y
5 ADDRESS1 VARCHAR2(30) Y
6 ADDRESS2 VARCHAR2(30) Y
7 CITY VARCHAR2(20) Y
8 ADDRESS_STATE VARCHAR2(2) Y
9 ZIP_CODE VARCHAR2(10) Y
10 COUNTRY_CODE VARCHAR2(6) Y
11 ACTIVE_STATUS VARCHAR2(1) Y
12 STATUS_DATE DATE Y
13 DELETE_DATE DATE Y
14 CONTACT VARCHAR2(30) Y
15 PHONE_NO VARCHAR2(20) Y
16 FAX_NO VARCHAR2(20) Y
17 TYPE_1099 VARCHAR2(6) Y
18 FORM_1099_DATE DATE Y
19 FORM_1042_FLAG VARCHAR2(1) Y
20 FORM_1042_DATE DATE Y
21 INCOME_CODE VARCHAR2(6) Y
22 EXEMPTION_CODE VARCHAR2(6) Y
23 RECIPIENT_TYPE VARCHAR2(6) Y
24 FEIN_NO VARCHAR2(11) Y
25 DUNS_NO VARCHAR2(9) Y
26 WITHHOLD_FLAG VARCHAR2(1) Y
27 ENTITY_TYPE VARCHAR2(6) Y
28 W9_RECEIVED VARCHAR2(1) Y
29 PROMPT_PAY_FLAG VARCHAR2(1) Y
30 PAYMENT_METHOD VARCHAR2(6) Y
31 PAYMENT_COUNTRY_CODE VARCHAR2(6) Y
32 EFT_NO NUMBER(9) Y
33 EFT_ACCOUNT_NO VARCHAR2(20) Y
34 EFT_ACCOUNT_TYPE VARCHAR2(6) Y
35 PRE_NOTE_FLAG VARCHAR2(1) Y
36 NOTES VARCHAR2(240) Y
37 USER_NAME VARCHAR2(30) Y
38 MODIFICATION_DATE DATE Y
39 DEVICE_NAME VARCHAR2(30) Y
40 APP_CODE VARCHAR2(8) Y

Enterprise Systems Engineering 136 Final (04/11/2002)

Appendix E – CAMS to FIMA Code Translation

This appendix provides the mapping of various FIMA code values to their CAMS
equivalent.

This table relates the FIMA Country Codes to the CFS Country Codes.

CODE_TYPE CODE_VALUE FIMA_CODE ACTIVE_STATUS
CNTRY AD 140 Y
CNTRY AE 888 Y
CNTRY AF 110 Y
CNTRY AG 149 Y
CNTRY AI 142 Y
CNTRY AL 120 Y
CNTRY AM 151 Y
CNTRY AN 640 Y
CNTRY AO 141 Y
CNTRY AQ 143 Y
CNTRY AR 150 Y
CNTRY AS 60 Y
CNTRY AT 165 Y
CNTRY AU 160 Y
CNTRY AW 152 Y
CNTRY AZ 167 Y
CNTRY BB 184 Y
CNTRY BD 182 Y
CNTRY BE 190 Y
CNTRY BF 927 Y
CNTRY BG 245 Y
CNTRY BH 181 Y
CNTRY BI 252 Y
CNTRY BJ 311 Y
CNTRY BM 195 Y
CNTRY BN 232 Y
CNTRY BO 205 Y
CNTRY BP 797 Y
CNTRY BR 220 Y
CNTRY BS 180 Y
CNTRY BT 200 Y
CNTRY BV 212 Y
CNTRY BW 210 Y
CNTRY BY 253 Y
CNTRY BZ 227 Y
CNTRY CA 260 Y
CNTRY CC 284 Y
CNTRY CF 269 Y
CNTRY CG 290 Y

Enterprise Systems Engineering 137 Final (04/11/2002)

CODE_TYPE CODE_VALUE FIMA_CODE ACTIVE_STATUS
CNTRY CH 855 Y
CNTRY CI 485 Y
CNTRY CK 292 Y
CNTRY CL 275 Y
CNTRY CM 257 Y
CNTRY CN 280 Y
CNTRY CO 285 Y
CNTRY CR 295 Y
CNTRY CS 310 Y
CNTRY CU 300 Y
CNTRY CV 264 Y
CNTRY CX 282 Y
CNTRY CY 305 Y
CNTRY CZ 310 Y
CNTRY DE 394 Y
CNTRY DJ 317 Y
CNTRY DK 315 Y
CNTRY DM 318 Y
CNTRY DO 320 Y
CNTRY DZ 125 Y
CNTRY EC 325 Y
CNTRY EE 333 Y
CNTRY EG 327 Y
CNTRY EH 947 Y
CNTRY ES 830 Y
CNTRY ET 335 Y
CNTRY FI 340 Y
CNTRY FJ 338 Y
CNTRY FK 337 Y
CNTRY FM 339 Y
CNTRY FO 336 Y
CNTRY FR 350 Y
CNTRY FX 368 Y
CNTRY GA 388 Y
CNTRY GB 925 Y
CNTRY GD 406 Y
CNTRY GE 395 Y
CNTRY GF 418 Y
CNTRY GH 396 Y
CNTRY GI 397 Y
CNTRY GL 405 Y
CNTRY GM 389 Y
CNTRY GN 417 Y
CNTRY GP 407 Y
CNTRY GQ 332 Y
CNTRY GR 400 Y

Enterprise Systems Engineering 138 Final (04/11/2002)

CODE_TYPE CODE_VALUE FIMA_CODE ACTIVE_STATUS
CNTRY GS 826 Y
CNTRY GT 415 Y
CNTRY GU 66 Y
CNTRY GW 737 Y
CNTRY GY 418 Y
CNTRY HK 435 Y
CNTRY HM 421 Y
CNTRY HN 430 Y
CNTRY HT 420 Y
CNTRY HU 445 Y
CNTRY ID 458 Y
CNTRY IE 470 Y
CNTRY IL 475 Y
CNTRY IN 455 Y
CNTRY IO 222 Y
CNTRY IQ 465 Y
CNTRY IR 460 N
CNTRY IS 450 Y
CNTRY IT 480 Y
CNTRY JM 487 Y
CNTRY JO 500 Y
CNTRY JP 490 Y
CNTRY KE 505 Y
CNTRY KG 521 Y
CNTRY KH 255 Y
CNTRY KI 62 Y
CNTRY KM 287 Y
CNTRY KN 759 Y
CNTRY KP 515 Y
CNTRY KR 516 Y
CNTRY KW 520 Y
CNTRY KY 268 Y
CNTRY KZ 503 Y
CNTRY LA 530 Y
CNTRY LB 540 Y
CNTRY LC 770 Y
CNTRY LI 553 Y
CNTRY LK 272 Y
CNTRY LR 545 Y
CNTRY LS 543 Y
CNTRY LT 555 Y
CNTRY LU 570 Y
CNTRY LV 531 Y
CNTRY LY 550 Y
CNTRY MA 610 Y
CNTRY MC 607 Y

Enterprise Systems Engineering 139 Final (04/11/2002)

CODE_TYPE CODE_VALUE FIMA_CODE ACTIVE_STATUS
CNTRY MD 598 Y
CNTRY MG 575 Y
CNTRY MH 596 Y
CNTRY ML 585 Y
CNTRY MN 608 Y
CNTRY MO 571 Y
CNTRY MP 673 Y
CNTRY MQ 591 Y
CNTRY MR 592 Y
CNTRY MS 609 Y
CNTRY MT 590 Y
CNTRY MU 593 Y
CNTRY MV 581 Y
CNTRY MW 577 Y
CNTRY MX 595 Y
CNTRY MY 580 Y
CNTRY MZ 615 Y
CNTRY NA 821 Y
CNTRY NC 645 Y
CNTRY NE 667 Y
CNTRY NF 672 Y
CNTRY NG 670 Y
CNTRY NI 665 Y
CNTRY NL 630 Y
CNTRY NO 685 Y
CNTRY NP 625 Y
CNTRY NR 618 Y
CNTRY NU 671 Y
CNTRY NZ 660 Y
CNTRY OM 616 Y
CNTRY PA 710 Y
CNTRY PE 720 Y
CNTRY PF 367 Y
CNTRY PG 712 Y
CNTRY PH 725 Y
CNTRY PK 700 Y
CNTRY PL 730 Y
CNTRY PM 771 Y
CNTRY PN 726 Y
CNTRY PR 72 Y
CNTRY PT 735 Y
CNTRY PW 75 Y
CNTRY PY 715 Y
CNTRY QA 747 Y
CNTRY RE 750 Y
CNTRY RO 755 Y

Enterprise Systems Engineering 140 Final (04/11/2002)

CODE_TYPE CODE_VALUE FIMA_CODE ACTIVE_STATUS
CNTRY RU 756 Y
CNTRY RW 758 Y
CNTRY SA 785 Y
CNTRY SB 797 Y
CNTRY SC 788 Y
CNTRY SD 835 Y
CNTRY SE 850 Y
CNTRY SG 795 Y
CNTRY SH 765 Y
CNTRY SL 790 Y
CNTRY SM 782 Y
CNTRY SN 787 Y
CNTRY SO 800 Y
CNTRY SR 840 Y
CNTRY ST 783 Y
CNTRY SU 825 Y
CNTRY SV 330 Y
CNTRY SY 858 Y
CNTRY SZ 847 Y
CNTRY TC 907 Y
CNTRY TD 273 Y
CNTRY TF 368 Y
CNTRY TG 883 Y
CNTRY TH 875 Y
CNTRY TJ 860 Y
CNTRY TK 885 Y
CNTRY TM 906 Y
CNTRY TN 890 Y
CNTRY TO 886 Y
CNTRY TR 905 Y
CNTRY TT 887 Y
CNTRY TV 908 Y
CNTRY TW 859 Y
CNTRY TZ 865 Y
CNTRY UA 911 Y
CNTRY UG 910 Y
CNTRY UK 925 Y
CNTRY UM 75 Y
CNTRY US 926 Y
CNTRY UY 930 Y
CNTRY UZ 931 Y
CNTRY VA 933 Y
CNTRY VC 775 Y
CNTRY VE 940 Y
CNTRY VG 231 Y
CNTRY VI 78 Y

Enterprise Systems Engineering 141 Final (04/11/2002)

CODE_TYPE CODE_VALUE FIMA_CODE ACTIVE_STATUS
CNTRY VN 944 Y
CNTRY VU 651 Y
CNTRY WF 943 Y
CNTRY WS 963 Y
CNTRY YE 965 Y
CNTRY YT 597 Y
CNTRY YU 970 Y
CNTRY ZA 801 Y
CNTRY ZM 990 Y
CNTRY ZR 291 Y
CNTRY ZW 818 Y

Enterprise Systems Engineering 142 Final (04/11/2002)

This table relates the FIMA FAC codes to the CFS equivalent.

CODE_TYPE CODE_VALUE FIMA_CODE ACTIVE_STATUS
FAC 1240 AGG N
FAC ABMC ABM Y
FAC AC AAA Y
FAC ACDA XXX N
FAC ADC ADC Y
FAC ADF XXX N
FAC AEC EEE N
FAC AF DAF Y
FAC AID AID Y
FAC ARC ARC Y
FAC ARMY DDA Y
FAC ATF TREAS N
FAC BIA XXX N
FAC BLM XXX N
FAC BOM XXX N
FAC BOR XXX N
FAC BXA BXA Y
FAC CCR XXX N
FAC CEN CCB Y
FAC CFTC XXX N
FAC CG TTT Y
FAC CIA CIA Y
FAC CNS CNS Y
FAC COE DDC Y
FAC COURTS AOC Y
FAC CPSC CPS Y
FAC DOC SEC Y
FAC DOD DDD Y
FAC DOE EEN Y
FAC DOI KKK Y
FAC DOJ GGG Y
FAC DOL LLL Y
FAC DOT TTT Y
FAC ECRC XXX N
FAC EDA EDA Y
FAC EDUC EDU Y
FAC EEOC EEC Y
FAC EIB EIB Y
FAC EPA EPA Y
FAC ERDA DDE N
FAC ESA ESA Y
FAC EXP EXP Y
FAC FAA TTA N
FAC FBI XXX N
FAC FBOP XXX N

Enterprise Systems Engineering 143 Final (04/11/2002)

CODE_TYPE CODE_VALUE FIMA_CODE ACTIVE_STATUS
FAC FCA FCA Y
FAC FCC FCC Y
FAC FDA XXX N
FAC FDIC FDI Y
FAC FEC XXX N
FAC FEMA FEM Y
FAC FERC XXX N
FAC FHFB XXX N
FAC FHWA XXX N
FAC FLRA FLR Y
FAC FMC CCM Y
FAC FMCS FMX Y
FAC FRSB XXX N
FAC FRTIB XXX N
FAC FS AGF N
FAC FTA XXX N
FAC FTC FTC Y
FAC FWA KKA N
FAC GAO GAO Y
FAC GPO GPP Y
FAC GSA GPA Y
FAC HHS WWW Y
FAC HUD BBB Y
FAC IAF XXX N
FAC IBWC IBW Y
FAC ICC XXX N
FAC INS XXX N
FAC IRS XXX N
FAC ITA ITA Y
FAC ITC ITC Y
FAC LOC MMM Y
FAC MBDA MBA Y
FAC MMS XXX N
FAC MSHA XXX N
FAC MSPB XXX N
FAC NARA XXX N
FAC NASA NAA Y
FAC NAVY DDN Y
FAC NCAR XXX N
FAC NCPC XXX N
FAC NCUA XXX N
FAC NEA XXX N
FAC NEH XXX N
FAC NFAH XXX N
FAC NIH NIH N
FAC NIST CCA Y

Enterprise Systems Engineering 144 Final (04/11/2002)

CODE_TYPE CODE_VALUE FIMA_CODE ACTIVE_STATUS
FAC NLRB NLB Y
FAC NMB XXX N
FAC NOAA NNA Y
FAC NONE XXX N
FAC NPCA XXX N
FAC NPR XXX N
FAC NPS KKB N
FAC NRC NRC Y
FAC NSA XXX N
FAC NSF EEF Y
FAC NTIA NTI Y
FAC NTIS TIS Y
FAC NTO NTO N
FAC NTSB XXX N
FAC OGE XXX N
FAC OIG OIG Y
FAC OPIC OPI Y
FAC OPM CSC Y
FAC OSC XXX N
FAC OSHA XXX N
FAC OSM XXX N
FAC OSTP XXX N
FAC PBGC XXX N
FAC PCC PCC Y
FAC PTO PTO Y
FAC RRB XXX N
FAC RTC XXX N
FAC SACA XXX N
FAC SBA SBA Y
FAC SEC XXX N
FAC SI SIX Y
FAC SSA SSA Y
FAC SSS SSX Y
FAC STATE NNN Y
FAC TA CTA Y
FAC TDA XXX N
FAC TDPOB XXX N
FAC TREAS RRR Y
FAC TVA EEG Y
FAC USDA AGG Y
FAC USGS XXX N
FAC USHOR HOP Y
FAC USIA EEK Y
FAC USPS PPP Y
FAC USTAX TCX Y
FAC USTTA XXX N

Enterprise Systems Engineering 145 Final (04/11/2002)

CODE_TYPE CODE_VALUE FIMA_CODE ACTIVE_STATUS
FAC VA VAX Y
FAC VOA XXX N
FAC WRC XXX N

Enterprise Systems Engineering 146 Final (04/11/2002)

This relates the FIMA Late Code values to the CFS equivalent.

CODE_TYPE CODE_VALUE FIMA_CODE ACTIVE_STATUS
LATE 1A 00B Y
LATE 1B 00C Y
LATE 1C 00A Y
LATE 2A 00E Y
LATE 2B 00F Y
LATE 2C 00G Y
LATE 2D OOI Y

Enterprise Systems Engineering 147 Final (04/11/2002)

This table relates the FIMA DOCUMENT_TYPE codes to the CFS Document Codes.

TRANS
_NO

FIMA_
DOCUMENT_

TYPE

FIMA_
DOC_
CLASS

FIMA_DOCUMENT_DESCR SUB
SYSTEM_

ID

CFS_DOC1
_CODE

CFS_DOC2
_CODE

ACTIVE_
STATUS

FIMA_2_
REF_FLAG

FIMA_2_
CONTROL
_FLAG

3 1 A INTERAGENCY AGREEMENT
PURCHASE ORDER

U IAGPO Y S F

144 1 B INTERFACE ABORT CORRECTION P NOMTCH INTAGR N S F
3713 1 B INTERAGENCY AGREEMENT

PURCHASE AGREEMENT
P VINV INTAGR Y S F

2852 1 B INTERAGENCY AGREEMENT
PURCHASE ORDER

P OPAC INTAGR Y S F

358 2 A BLANKET PURCHASE AGREEMENT
CALL

U POCALL Y R Y

415 2 A FINANCE OFFICE BLANKET
PURCHASE AGREEMET

U FOBPA Y S F

4 2 B EXPRESS SMALL PACKAGING
SERVICES

P NOMTCH FEDEX Y S Y

4013 2 B CFS TO FIMA ERROR CORRECTION P RECUR FEDEX N S Y
4336 2 B CFS TO FIMA ERROR CORRECTION P RECUR SUPPLY N S F
4014 2 B CFS TO FIMA ERROR CORRECTION P VINV EXMAIL N S Y
2954 2 B INTERFACE ABORT CORRECTION P NOMTCH GOODS N P Y
2493 2 B BLANKET PURCHASE AGREEMENT

(OPAC)
P OPAC SUPPLY Y S F

386 2 B EXPRESS MAIL TRANSPORTATION P NOMTCH EXMAIL Y S Y
145 2 B BLANKET PURCHASE AGREEMENT P NOMTCH SUPPLY Y S F
27 2 B BLANKET PURCHASE AGREEMENT P NOMTCH SERV Y S F
467 2 B BLANKET PURCHASE AGREEMENT

(OPAC)
P OPAC SERV Y S F

6 3 A NON-RECURRING CONTRACTS U CONTRT Y S F
7 3 A INTERGOVERNMENTAL PERSONNEL

ACT ASSIGNM
U IPA Y S Y

2 5 A RECURRING DELIVERIES U RECDEL Y S F
8 6 B LEASES (RECUR) P RECUR LEASE Y S F

2209 6 B LEASES (NOMTCH) P NOMTCH LEASE Y S F

Enterprise Systems Engineering 148 Final (04/11/2002)

TRANS
_NO

FIMA_
DOCUMENT_

TYPE

FIMA_
DOC_
CLASS

FIMA_DOCUMENT_DESCR SUB
SYSTEM_

ID

CFS_DOC1
_CODE

CFS_DOC2
_CODE

ACTIVE_
STATUS

FIMA_2_
REF_FLAG

FIMA_2_
CONTROL
_FLAG

4741 6 B CFS TO FIMA ERROR CORRECTION P RECUR ADV Y S F
281 6 B UTILITIES (RECUR) P RECUR UTIL Y S F
24 6 B UTILITIES (NOMTCH) P NOMTCH UTIL Y S F
1 7 A GSA REIMBURSABLE WORK

AUTHORIZATION
U GSARWA Y S F

10 8 A TRAINING U TRAIN Y S F
4214 8 B TRAINING - ERROR 9/19 P VINV TRAIN N S F
4885 8 B TRAIN: CORRECT CFS2FIMA P NOMTCH TRAIN Y S F
12 12 B PURCHASE

ORDER/INVOICE/VOUCHER
P NOMTCH SF44 Y S F

2853 13 A MILSTRIP U MILSTR Y S F
4696 13 A FEDSTRIP U FEDSTR Y S F
4697 13 B FEDSTRIP (NOMTCH) P OPAC FEDSTR Y S G
4698 13 B MILSTRIP (NOMTCH) P OPAC MILSTR Y S G
4699 13 B MILSTRIP (NOMTCH) P VINV MILSTR Y S G
1589 14 D PURCHASE CARD P NOMTCH PCARD Y S G
14 19 B MISCELLANEOUS CERTIFIED

INVOICE
P NOMTCH MISC Y I Y

16 19 B ADVERTISING ORDER P NOMTCH SF1143 Y I Y
4496 19 B MISCELLANEOUS OPAC INVOICE P OPAC MISC Y S F
15 19 B ARBITRATION FEES P NOMTCH ARBFEE Y I Y
30 20 B TRAVEL DOMESTIC P TRAVNM DOM Y I F

2893 20 B INTERFACE ABORT CORRECTION P NOMTCH DOM Y I F
262 20 C GTA DOMESTIC P NOMTCH GTADOM Y S G
23 23 A GOVERNMENT BILL OF LADING U TRANSP Y S F
263 26 C GTA PCS P NOMTCH GTAPCS Y S G
31 27 B TRAVEL FOREIGN P TRAVNM FOR Y I F
264 27 C GTA FOREIGN P NOMTCH GTAFOR Y S G
388 27 C INTERFACE ABORT CORRECTION P TRAVNM GTAFOR N S G
4656 29 C GSA MOTOR POOL P NOMTCH MTRPL Y S G

Enterprise Systems Engineering 149 Final (04/11/2002)

TRANS
_NO

FIMA_
DOCUMENT_

TYPE

FIMA_
DOC_
CLASS

FIMA_DOCUMENT_DESCR SUB
SYSTEM_

ID

CFS_DOC1
_CODE

CFS_DOC2
_CODE

ACTIVE_
STATUS

FIMA_2_
REF_FLAG

FIMA_2_
CONTROL
_FLAG

21 30 B RECOMMENDATION FOR
RECOGNITION

P NOMTCH CD326 Y V F

303 30 B INTERFACE ABORT CORRECTION P CM CD326 N V F
67 30 B IMPREST FUND PURCHASES P NOMTCH NF34-6 Y P Y
20 31 B CLAIM FOR REIMBURSEMENT FOR

EXPENDITURE
P NOMTCH SF1164 Y I Y

2653 31 B INTERFACE ABORT CORRECTION P TRAVNM SF1164 Y I Y
244 33 B CONTRACT OBSERVER P NOMTCH OBSERV Y S F
1209 33 B INTERFACE ABORT CORRECTION P NFCAP OBSERV N S F
1449 33 B INTERFACE ABORT CORRECTION P TRANSP OBSERV N S F

9 35 A FOREIGN TRAINEE VOUCHER U FORTRN Y S Y
242 35 B INTERFACE ABORT CORRECTION P NOMTCH STIPEN N P Y
28 36 B OIL COMPANY INVOICES FOR

CREDIT CARD
P NOMTCH GASCD Y S Y

354 40 A ONE-TIME PAYMENT PURCHASE
ORDER

U PO Y P Y

204 40 B INTERFACE ABORT CORRECTION P VINV GOODS N P Y
4743 40 B INTERFACE ABORT CORRECTION P VINV SERV Y P Y
355 41 A ADVANCE PAYMENT PURCHASE

ORDER
U POAVPY Y P Y

357 42 A RECURRING PAYMENT PURCHASE
ORDER

U PORCUR Y P Y

245 42 B COOP OBSERVER P RECUR OBSERV Y S F
2372 42 B RECURRING PAYMENT (NO

OBLIGATION RECORD)
P RECUR SERV Y S F

356 43 A MULTIPLE PAYMENT PURCHASE
ORDER

U POMULT Y P Y

246 47 B FAMILY SEPARATION ALLOWANCE P NOMTCH NF5615 Y S Y
17 48 B TORT CLAIM P NOMTCH SF1145 Y S Y
170 48 B EMPLOYEE CLAIM FOR LOSS OF OR

DAMAGE TO
P NOMTCH CD224 Y S Y

66 48 B PERSONAL PROPERTY CLAIM P NOMTCH SF1034 Y S Y

Enterprise Systems Engineering 150 Final (04/11/2002)

TRANS
_NO

FIMA_
DOCUMENT_

TYPE

FIMA_
DOC_
CLASS

FIMA_DOCUMENT_DESCR SUB
SYSTEM_

ID

CFS_DOC1
_CODE

CFS_DOC2
_CODE

ACTIVE_
STATUS

FIMA_2_
REF_FLAG

FIMA_2_
CONTROL
_FLAG

352 50 B TRAVEL ADVANCE APPLIED P TRAVNM ADVAPP Y I F

Enterprise Systems Engineering 151 Final (04/11/2002)

Appendix F – Issue Log

Issue # Description / Resolution Identified By /
Assigned To

Status Opened Date /
Closed Date

1. It is unclear what data and at what level data will be converted from FIMA
to CAMS at the time of the cutover.

M. Kirwan Open (as of 3/21/02) 16-Jan-02

2. The Account Receivable module of CAMS is still under development and
has not been accepted/implemented by NOAA. Will any of this data be
available for the Commitment Tracking Interface?

M. Kirwan Open (as of 3/21/02) 16-Jan-02

3. The task to implement Summary Level Transfers is still under
development and has not been accepted/implemented by NOAA. Will any
of this data be available for the Commitment Tracking Interface?

M. Kirwan Open (as of 3/21/02) 16-Jan-02

4. The process for applying Labor Estimates has not been tested/implemented
in CAMS by NOAA. Will any of this data be available for the
Commitment Tracking Interface?

M. Kirwan Open (as of 3/21/02) 16-Jan-02

5. The ASAP interface to handle grants is still under development and has
not been accepted/implemented by NOAA. Will any of this data be
available for the Commitment Tracking Interface?

M. Kirwan Open (as of 3/21/02) 16-Jan-02

6. The budget tables in CFS store labor quantities as FTE amounts. The
actual labor data provided by the NFC reflects hours. The NOAA Data
Mart will need to compute FTE’s from hours and possible hours from
FTE’s in order to provide the ability for comparison reporting. NOAA
must provide the formula for this calculation.

M. Kirwan Open (as of 3/21/02) 06-Mar-02

DRAFT Version of Chart

Enterprise Systems Engineering 152 Final (04/11/2002)

Appendix G – CFS-FIMA Accounts Payable Document Crosswalk (DRAFT)

The following is a copy of the CFS-FIMA Accounts Payable Document Crosswalk that was provided on March 13, 2002. A new
version is being developed and will be provided as soon as it is available.

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Interagency
Agreement

Optional Form
347 – Order for
Supplies or
Services

CD-435
Procurement
Request

01 OF-347/CD-435
Document #

Example:
1EFM62227

FM040
Purchase
Order
Transaction
Screen

IAGPO INTAGR OF-347/CD-435
Document Number

Example: 1EFM62227

FM040 Oblig #
9940

DRAFT Version of Chart

Enterprise Systems Engineering 153 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Blanket
Purchase
Agreement

CD-404 Supply,
Equipment, or
Service Order

02 BPA Document
Number

Example:
45JGF8014

PM003
Invoice
Transaction
Screen

NOMTCH SUPPLY
SERV

BPA Document #

Example: 45JGF8014

PM003 Trans #
581775

Fedex Express Small
Package Service
(ESPS) Interface

02 CAMS PM003
Transaction # + P

Example:
000621705P

PM003
Invoice
Transaction
Screen

NOMTCH FEDEX

Fedex Bill to Account #

Example: 108722320

PM003 Trans #
621705

Express Mail
(Package
delivery services
other than those
billed through
ESPS ie DHL,
UPS)

Vendor’s invoice 02 CAMS PM003
Transaction # + P

Example:
00585107P

PM003
Invoice
Transaction
Screen

NOMTCH EXMAIL Account # PM003 Trans
#585107

DRAFT Version of Chart

Enterprise Systems Engineering 154 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Non Recurring
Contracts

SF-26
Award/Contract

03 SF-26 Document
Number

Example:
1DKNA9017

FM040
Purchase
Order
Transaction
Screen

CONTRT GOODS
SERV
SUPPLY

Contract # from SF-26

Example:
1DKNA9017

FM040 Oblig #
9995

DRAFT Version of Chart

Enterprise Systems Engineering 155 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Intergovt
Personnel
Agreements

OF-69
Assignment
Agreement

03 FM040 Oblig # + U

Example:
00017559U

FM040
Purchase
Order
Transaction
Screen

IPA IPAAGR IPA Agreement #

Example: 2IPA00DRJ

FM040 Oblig #
17559

Grants4 Interface
CD-435
Procurement
Request
CD-450 Financial
Assistance Award
CD-451
Amendment to
Financial
Assistance Award

04 FM041 Source
Reference

Example:
OA6AC0369

FM041 GRANT
ZGRANT
BGRANT
YGRANT

GRANT Grant Identifying
Number in FM041
Source Reference:

Example:
NA06AC0369

FM041 Obligation
Number

 4Grants - CAMS Implementation Date Spring 2002 - Values may be subject to change.

DRAFT Version of Chart

Enterprise Systems Engineering 156 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Recurring
Deliveries
(Non Temporary
Storage of
Household
Goods not
related to PCS
moves)

Form DD-1164 –
Service Order for
Household Goods

Standard Form
1113 – Public
Voucher for
Transportation

05 FM040 Source Ref

Example:
2AAE0005T

FM040
Purchase
Order
Transaction
Screen

RECDEL STORAG DD-1164/SF1113
Document #

Example: 2AAE005TT

FM040 Oblig #
15246

Work Orders Optional Form
347
-Order for
Supplies or
Services

05 FM040 Source Ref

Example:
2WW200002

FM040
Purchase
Order
Transaction
Screen

RECDEL SUPPLY Work Order #

Example:
2WW200002

DRAFT Version of Chart

Enterprise Systems Engineering 157 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Lease SF-2 U S Govt
Lease for Real
Property
GSA Form 276
Supplemental
Lease Agreement

06 PM003 Source
Reference

Example:
4MD0289ZZ

PM020
Recurring
Invoice
Maintenance
Screen
PM003
Vendor
Invoice
Transaction
Screen

RECUR LEASE SF-2 or GSA Form 276
Document #

Example:
4MD0289ZZ

PM003 Trans
#588582

DRAFT Version of Chart

Enterprise Systems Engineering 158 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Utilities Vendor’s Invoice 06 PM003 Source Ref

Example:
TE8513700

PM020
Recurring
Invoice
Maintenance
Screen
PM003
Vendor
Invoice
Transaction
Screen

RECUR UTIL Utility Account #

Example: TE8513700

PM003 Trans
#629462

GSA Tele-
communications
5

Interface
NOAA Form 37-1
Telecom Service
Authorization

06 PM003 Source
Reference

Example: 8N0018798

PM003 NOMTCH TBD PM003 Trans#

 5 GSA Telecommunications Interface CAMS Implementation Date FY03

DRAFT Version of Chart

Enterprise Systems Engineering 159 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

GSA
Reimbursable
Work
Authorization

GSA Form-2957
Reimbursable
Work
Authorization

07 FM040 Source Ref

Example:
2N2481096

FM040
Purchase
Order
Transaction
Screen

GSARWA RWA GSA Form 2957
 Document #

Example: 2N2481096

FM040 Oblig
#11947

Training
Authorization

SF-182 –
Request,
Authorization,
Agreement and
Certification of
Training

08 FM040 Source Ref

Example:
2FAKC0003

FM040
Purchase
Order
Transaction
Screen

TRAIN TRAIN SF-182 Document #

Example: 2FAKC0003

FM040 Oblig
#16685

Printing6 SF-1
CD-10

09

 6Printing - CAMS Implementation Date Spring 2002

DRAFT Version of Chart

Enterprise Systems Engineering 160 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Purchase
Order/Voucher/
Invoice

SF-44 Purchase
Order/Voucher/
Invoice

12 PM003 Source Ref

Example: 000188968

PM003
Vendor
Invoice
Transaction
Screen

NOMTCH SF44 SF-44 Document #

Example: 000188968

PM003 Trans
#650997

Fedstrip/Milstrip
(MASC only)

GSA Form 952 –
Single Line Item
Billing Register

SF1080 –
Voucher for
Transfers
Between
Appropriations
and/or Funds

13 FM040 Source Ref

Example:
005AX2003

PM003 Source Ref

Example:
031AP1353

FM040
Purchase
Order
Transaction
Screen

or

PM003
Vendor
Invoice
Transaction
Screen

FEDSTR

or

OPAC

FEDSTR

FEDSTR

Fedstrip/Milstrip
Document #

Example: 005AX2003

Example:
031AP1353

FM040
Oblig#18874

or

PM003
Trans#607533

DRAFT Version of Chart

Enterprise Systems Engineering 161 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Purchase Card CPCS Interface 14 PM003 Source Ref

Example:
PURCHEASC

PM003
Vendor
Invoice
Transaction
Screen

NOMTCH PCARD PURCH + ASC
designator

Example:
PURCHEASC

PM003 Trans
#626413

Advertising
Order

SF-1143
Advertising Order
Invoice

19 PM003 Trans # + P

Example:
00634262P

PM003
Vendor
Invoice
Transaction
Screen

NOMTCH SF1143 SF-1143 Document
Ref

HEIDI SMITH

PM003 Trans
#634262

Arbitration Fee*
No Recent
Examples
Available

CD-435 Purchase
Request

19 PM003 Trans # + P PM003 NOMTCH ARBFEE Comptroller General’s
decision #

PM003 Trans #

DRAFT Version of Chart

Enterprise Systems Engineering 162 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Miscellaneous
Invoice

Vendor’s Invoice 19 PM003 Trans # + P

Example:
00633618P

PM003 NOMTCH MISC Optional Additional
Info

Example: 002SEA007

PM003 Trans
#633618

Travel (TDY
Domestic)

Travel Manager
Interface

20 PM003 Invoice #
Example:
2AN1S0075

PM003 TRAVNM DOM Travel Voucher #

Example:
TV2AN1S0075

PM003 Trans
#632430

Travel (GTA
Domestic)

GTA Interface 20 PM003 Source Ref

Example:
2WT5S1002

PM003 NOMTCH GTADO
M

Travel Order #

Example: 2WT5S1002

PM003 Trans
#519890

DRAFT Version of Chart

Enterprise Systems Engineering 163 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Government Bill
of Lading (GBL)

Standard Form
1103 – U.S.
Government Bill
of Lading

Standard Form
1113 – Public
Voucher for
Transportation
Charges

23 FM040 Source Ref

Example: 0D3851890

FM040 TRANSP GBL SF1103/1113
Document #
Example: 0D3851890

FM040 Oblig
#17596

PCS (GTA) GTA Interface 26 PM003 Source Ref

Example:
2AN1P0083

PM003 NOMTCH GTAPCS Travel Order #

Example: 2AN1P0083

PM003 Trans
#650907

DRAFT Version of Chart

Enterprise Systems Engineering 164 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Travel (TDY
Foreign)

Interface 27 PM003 Invoice #

Example:
2NA0F2027

PM003 TRAVNM FOR Travel Voucher #

Example:
TV2NA0F2027

PM003 Trans
#650298

Travel (GTA
Foreign)

Interface 27 PM003 Source Ref

Example:
2NS4F0500

PM003 NOMTCH GTAFOR Travel Order #

Example: 2NS4F0500

 PM003 Trans
#520173

GSA Motorpool
(CASC only)

Interface 29 PM003 Source Ref

Example: G4137591

PM003 OPAC MTRPL Vehicle Tag #

Example: G4137591

PM003 Trans
#612788

DRAFT Version of Chart

Enterprise Systems Engineering 165 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Cash In Your
Account

CD-326
Recommendation
for Recognition

30 PM002 TIN #
(Employee’s SSN)

Example:
18644XXXX

PM003 NOMTCH CD326 Awarding NOAA
organization

Example:
DOCNOAANWSNCE
P

*Note: Employee’s
SSN goes back to
FIMA as document #

PM003 Trans
#517724

Imprest Fund
Purchase
(Direct
Reimbursement
to Employee)

NF-34-6 Imprest
Fund
Reimbursement

30 PM003 Trans # +P

Example: 00620518P

PM003 NOMTCH NF34-6 NOAA organization of
requestor

Example:
DOCNOAANMFS

PM003 Trans
#620518

DRAFT Version of Chart

Enterprise Systems Engineering 166 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Local Travel
Voucher

TM Interface or
paper
SF-1164 Claim
for
Reimbursement
for Expenditures
on Official
Business

31 PM003 Trans # + P

Example:
00601891P

PM003 NOMTCH SF1164 SF-1164 Voucher #

Example:
LV2AD0S0012

PM003 Trans
#601891

Contract
Observer

WS Form B66
Payroll Sheet for
Contract
Observers

33 PM003 Source Ref

Example:
0WD000007

PM003 NOMTCH OBSERV Contract Observer
Document #

Example: 0WD000007

PM003 Trans
#624491

DRAFT Version of Chart

Enterprise Systems Engineering 167 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Foreign Trainee
Stipends

CD-435 Purchase
Request
SF-1034 Public
Voucher for
Purchases and
Services other
than Personal

35 FM040 Oblig # + U

Example:
00015536U

FM040 FORTRN STIPEN
TRAIN

Trainee’s Name

Example: Rafael Vera

FM040 Oblig
#15536

Oil Company
Credit Card

Invoice 36 PM003 Trans # + P

Example:
00627816P

PM003 NOMTCH GASCD Vendor’s Invoice
Account #

Example: 869901207

PM003 Trans
#627816

DRAFT Version of Chart

Enterprise Systems Engineering 168 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

CSTARS/SPS
Purchase Order

CSTARS
Purchase Order
SPS CD 404
Supply,
Equipment, or
Service Order

40 FM040 Source
Reference

Example:
DG2SE0024

FM040 PO2ADV
PO2WAY
PO3WAY

EQUIP
EXCISE
FR
NMERC
SERV
SUPPLY

CSTARS/SPS
Document #
(9 digit FIMA version)

Example: DG2SE0024

FM040
Oblig#18760

One-Time
Purchase Order
(CSPS)

CD-404 Supply,
Equipment, or
Service Order

40 FM041 Oblig # + U

Example:
00013716U

FM041 CSPS PO EQUIP
EXCISE
FR
GOODS
NMERC
SERV
SUPPLY

Optional

FM041 Oblig
#13716

DRAFT Version of Chart

Enterprise Systems Engineering 169 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Advance
Payment PO
(CSPS)

CD-404 Supply,
Equipment, or
Service Order

41

FM041 Oblig # + U

Example:
00010355U

FM041 POAVPY GOODS
SERV
SUPPLY

Optional FM041 Oblig
#10355

Recurring
Payment PO
(CSPS)

CD-404 Supply,
Equipment, or
Service Order

42 FM041 Oblig # + U

Example:
00013931U

FM041 PORCUR GOODS
SERV

Optional FM041 Oblig
#13931

Co-op Observers CD-404 Supply,
Equipment, or
Service Order

42 PM003 Source Ref

Example:
3SW2W0060

PM020
PM003

RECUR OBSERV CD-404 Document #
(9 digit FIMA version)

Example:
3SW2W0060

PM003 Trans
#637050

DRAFT Version of Chart

Enterprise Systems Engineering 170 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Multiple
Payment
Purchase Order
(CSPS)

CD-404 Supply,
Equipment, or
Service Order

43 FM041 Oblig # + U

Example:
00014211U

FM041 POMULT EQUIP
EXCISE
FR
GOODS
NMERC
SERV
SUPPLY

Optional FM041 Oblig
#14211

Family
Separation
Allowance

NOAA FORM
56-15 Family
Separation
Allowance Claim
& Authorization

47 PM003 Trans # + P

Example: 00424809P

PM003 NOMTCH NF5615 NOAA Corps Officer’s
Name

Example:
HAGANJEFF

PM003 Trans #
424809

DRAFT Version of Chart

Enterprise Systems Engineering 171 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Personal
Property
Claim/Tort
Claim Voucher

Standard Form
1145 – Voucher
for Payment
Under Federal
Tort Claims Act

Standard Form
1034 – Public
voucher for
Purchases and
Services other
than Personal

Form CD-224 –
Employee Claim
for Loss of or
Damage to
Personal Property

48 PM003 Trans # + P

Example: 00629079P

PM003 NOMTCH

SF1145
SF1034
CD224

Type of Claim

Example: TORT
CLAIM

PM003 Trans
#629079

DRAFT Version of Chart

Enterprise Systems Engineering 172 Final (04/11/2002)

DOCUMENT INFORMATIO
N

FIM
A

INFORMATION CAMS
INFORMATION

Document
Description

Source
Document

FIM
A
Doc
Type

9-Digit FIMA
Document No

CAMS Initial
Point of
Entry

Documen
t Type

Item
Types

CAMS Source
Reference Field Value

System
Generated CAMS
Transaction No

Travel Advance Interface
CD-369 Travel
Advance

50 PM003 Invoice #

Example:
2MAPF1019

PM003 TRAVNM ADVAPP Travel Voucher #

Example:
TV2MAPF1019

PM003 - FIMA

Enterprise Systems Engineering 173 Final (04/11/2002)

Appendix H – Batch Routine Log File Layout
ROUTINE.SQL Log Report

Routine Name: ROUTINE.SQL
Date/Time Process Started: mm/dd/yyyy hh:mm:ss AM
REFRESH ID / PASS #: 999999/999
PARAMETERS USED:
NDW_REFRESH_PARAMS.BEGIN_TRANS_NO (KEY FIELD): 999999999
NDWnnn_RECORDS_TO_PROCESS: 999999999
NDWnnn_RECORDS_TO_COMMIT: 999999999

PARAMETERS UPDATED:
NDW_REFRESH_PARAMS.BEGIN_TRANS_NO (KEY FIELD): 999999999

NDW_PROCESS_LOG:
DATE/TIME MODIFICATION DATE TRANS NO TABLE NAME RECORDS AMOUNT STEP DESCRIPTION
------------------- ---------------------- -------- -------------------- ----------- ------------------- ---
mm/dd/yyyy hh:mm:ss mm/dd/yyyy hh:mm:ss XM 99999999 TRIAL 999,999,999 $999,999,999,999.99 XXX

Example:
mm/dd/yyyy hh:mm:ss 99999999 TRIAL Routine started with TRIAL_ID > this
number.

mm/dd/yyyy hh:mm:ss TRIAL 100 $ 111,111.11 Cumulative summarized records committed
 to NDW_STAGING table - ROWID = 999999.

mm/dd/yyyy hh:mm:ss TRIAL 200 $ 222,222.22 Cumulative summarized records committed
 to NDW_STAGING table - ROWID = 999999.

mm/dd/yyyy hh:mm:ss TRIAL 300 $ 333,333.33 Cumulative summarized records committed
 to NDW_STAGING table - ROWID = 999999.

mm/dd/yyyy hh:mm:ss 99999999 TRIAL 325 $ 333,444.44 Last TRIAL_ID processed updated in
 NDW_REFRESH_PARAMS table.

mm/dd/yyyy hh:mm:ss 99999999 TRIAL 999,999,999 $999,999,999,999.99 Process completed. Count and control
 total of TRIAL records processed.

Date/Time Process Ended: mm/dd/yyyy hh:mm:ss AM

